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have demonstrated a capability to classify more accurate y
than human classifiers and a relative insensitivity to
particle orientat on

'Th tiiaining data consisted of a specially selected
set of observations obtained on four flights. The algor -

thins were tested against arbitrarily selected segments
from two additional flights. The algorithms were develop-
ed using the ADAPT Service Corporation's eigenvector or
empirical orthogonal function (EOF) technique to object-
ively define the features and the ADAPT independent
eigenscreening algorithm development progxm to relate
these features to the particle types.

Analysis of the performance suggests that considerab e
variation is to be expected based on the set to set
variation of particle types and distribution between rea
data sets. The classification schema have been develope
to allow the user to change key parameters to compensate
for this variation. The use of the confusion matrix to
select the value of these parameters is illustrated.

Human and machine classification of these particles
was compared. It was found that there is considerable
disagreement between classifications made by two differ-
ent observers trained by the same person as well as
considerable disagreement between classifications made
by the same observer at different times. A team method
was introduced utilizing two human dlassifiers and a
preliminary machine classification to attempt to minimiA
this effect in creating the training data setZ7It was
concluded that the machine classification developed was
greatly superior to manual classification for day to day
identification of these particles because the machine
classifiers were much faster, less costly, did not suffe3
from fatigue and were usually more accurate, (i.e. in
better agreement with the trainer) then human classi-
fications
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1.0 INTRODUCTION

The problem of identifying ice particle types occurring
in clouds based on shadow graph images have recently become
important to cloud physics studies. The effects of clouds
on microwave sensing in weapon systems, satellite imagery,
and the propagation of millimeter waves are often functions
of the shapes of cloud particles as well as their concentra-
tion and size distribution. Dyer and Barnes1 have presented
a survey discussion of the areas of applications, measurement
techniques and characteristics of ice crystals which can be
found in clouds. Additional discussion of applications and
measurement of cloud particle shapes can be found in Referen-
ces 1 and 2.

The problem of examining the two dimensional images,
identifying the particle type and calculating the statistics
of particle types occurring during the data collection run
is one which is particularly well suited for automated
machine classification. This is because of the large quantity
of data which is obtained and the fact that the manual classi-
fication of particles very rapidly becomes fatiguing and would
require a very large staff of technicians to classify even a
relatively modest set of data. In addition to this, we have
shown (see Section 3.0) that the particle types are suffi-
ciently poorly defined that there is significant disagreement
among classifications made by different persons, even when
those persons are aware of the problem and trained by the
same person. We have also found significant disagreement
between classifications made by the same person at different
times.

Despite this great need with the exception of the classifiers
presented in References (1) and (2), the development of automated
machine classifiers for recognition of cloud particle types
have not been reported in the literature. Although the machine
classifiers which have been presented in this paper apply to
the same data as those which are described in Reference (1)
and (2), there are several significant differences between
the classifers developed here and those reported in References
(1) and (2) which should significantly improve their performance.

(1) Rosemary M. Dyer and Arnold A. Barnes, Jr., "The Micro-
physics of Ice Clouds-A Survey", Air Force Surveys in Geo-
physics #411, AFGL-TR-79-0103, NTIS AD A07702D, 8 May 1979.
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These are:

1) The present classifiers were developed using real
data as training data,

2) The present classifiers use the unique capability
of the ADAPT family of empirical classification development
programs to objectively define and select features for large
data sets as opposed to the usual intuitive definition of
features followed by an objective evaluation of a limited
number of features.

3) The present classifiers are bps@d on variations of
the Fisher classifier rather than the maximW likelihood/
Bayes family of classifiers,

4) The present algorithms are Incorporated in schema
which permit the adjustment of thresholds to account for
special needs of the user or characteristics of the particular
data set.

Section 2 of this report summarizes the development and
performance of the machine classifier, Section 3 summarizes
the comparison of human and machine performance for making
these classifications. Sections 2 anO 3 have served as the basis
for two separate journal articles to be sbmitted on these
two subjects, respectively,

Section 4 of this report briefly smmorizes the use of
the computer programs which have been developed to prepare
the data and implement the classification procedures. The
data preparation program is a relatively minor modification
from the users viewpoint of the Air Force Geophysics Labs
Program KN2UTIL. The program for implementing the classifica-
tion algorithms takes the output of the modified program KN2UTIL
and processes it through the schema resulting in a printout of
the identification of the particles. Sections 5 and 6, Analysis
of Eigenvector Transformation and Analysis of Relative Importance
Vectors provide detail insight into some of the characteristics
of both the eigenvector transformation and the algorithms.
This information is of interest to those who wish to understand
the mechanisms of the algorithms and more about the eigen-
vector approach used to develop the algorithms, however, it is
not necessary to the understanding of what the algorithms will
do and how to use the algorithms. The final Section 7.0,
summarizes the conclusions which we have reached as a result
of this study.
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2.0 DEVELOPMENT OF 2-D HYDROMETEOR
MACHINE CLASSIFIER FROM OBSERVED

DATA

2.1 Definition of Data Vectors

Data Source

The data used in this study were obtained from the
two dimensional Knollenberg laser scanning device. These
devices and their calibration are described extensively in
the literature by Knollenberg (4), (5), (6) and by Heynsfield
and Knollenberg (7), Heynsfield (8), and Cunningham (9).
Briefly, the system consists of a laser beam luminating a
liie of photo diodes. As particles fall through the viewing
volume, it includes some of the diodes, the number and location
of which are determined by the particle size and shape. A
rapid scanning system records the diodes included per unit
forward motion of the aircraft. This forward motion equals
the minimum grid size;and hence, the smallest size particle
measurement by the device (25p). Figure 1 is an usually
clear example of an unusually pure set of dendrites recorded
by the two dimensional probe.

Preprocessing

The initial preprocessing performed is to reject artifacts
and trivial cases. The most common of these to be rejected
are:

1) particles less than three diodes in length. Particles
smaller than three diodes do not have sufficient information
for classification and may be treated as spheres for many of
the applications.

2) Images containing more than one particle. Multiple
particles are rejected primarily to make the classification
problem more tractable. Physical arguments can also be made
that when multiple particles are present they are often pieces
of a single particle that is breaking up.

3) Particles which were entering broadside were also
rejected to make the classification problem more tractable.
These particles could be handled by rotating them 90 degrees
and then processing them through the classifier. The programs
developed are capable of this, although to date, these particleshave represented a relatively small percentage of the total

particles and this has not been necessary.

3
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Unlike the work presented in References (2) and (3),
streakers (usually water shedding across the up stream edge
of the probe and across the aperture) have not been rejected
in the preprocessing stage but have been retained as a
particle class to be rejected as part of the classification
procedure. This has been done since the processing required
to identify streakers is more like the classification of
the particles than like the remainder of the preprocessing
in terms of the procedures used and can be done more effi-
ciently at the latter time. An optional preprocessing is
available as part of the classification procedure to rotate
all particles until their ratio of the maximum width to
length is minimized. This option was used primarily to
investigate the sensitivity of the algorithms to rotation
and will be discussed later in the paper.

*, Construction of Data Vectors

The second step in the data preparation was to construr

a linear data vector from the two dimensional binary arrays
of occluded and exposed diodes.

Figure 2 illustrates how the 2-D spectrometer data was
converted into a data vector. This figure illustrates this
procedure for two different particles used in this study.
The upper portion of the figure is the data vector correspond-
ing to the shadow image shown in the lower portion of the
figure. The shadow of the particle is created by the occlu-
sion of diodes in a 32 by N array as the particle passes.
Each of the X's in the lower figure indicates the location of
an occluded diode. The shadow graphs of the particles were
relocated so that the origin could be taken in the upper left
hand corner of these figures and at least one occluded diode
would lie on the horizontal axis.

To create a single numerical value for each row, each
occluded diode was treated as a binary bit turned on and each
of the diodes which was not included was treated as a zero
binary bit. This bit structure at each of the horizontal
locations was then interpreted as a binary number. Fort he

* ,purposes of this study, the length of the particle, N, was
arbitrarily limited to a maximum of 64 rows of diodes. Thus,
the first 64 numbers in the upper figure or data vector are
simply the natural logarithm of the integer resulting from
the bit structure of the corresponding row of diodes normalized
to unity square magnitude. The next 30 numbers are the frequency
spectra obtained when that 64 point bit structure was processed
through a fast Fourier transform. To eliminate the DC term,

the first two bins of the frequency spectra were deleted

* 5
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resulting in a total of 30 numbers. The 30 frequency bins
were also normalized to unity square magnitude. The 95th
and 96th values in the data history were the square magnitude
of the time history and the square magnitude of the frequency
histories which were used to normalize these two portions
of the history. Points 97 and 98 were the Feret length and
width, respectively. The 99th point was the index value at
which the particle had its maximum width.

2.2 Definition of Truth Data Sets

A total of 2,104 particles images obtained on three data
gathering flights were used as training and verification data
for this study. This data was divided into three different

sets of data. The training set consisted of 403 patterns
obtained on a single flight. There were also two verification
sets taken from two different flights. One verification set
consisted of 1500 particles and the second of 201 particles.
The 201 case set was used to evaluate both manual classification
and competitive classification schemes and will be called the
"manual reference set" through the remainder of this paper.

Manual classification were prepared for all three data
sets. Except for the 1500 case proof test set, at least two
different manual classifications were made for each of these
data sets. For each of these three data sets, the manual
classification arrived at by the team effort and defined as
the correct classification was available. For the 403
training cases, there was also the initial manual identification
used to derive the first exploratory algorithms. We shall
refer to this manual classification as the original training
classification. Approximately a dozen different manual
classifications were made on the manual reference set and are
reported in detail in Reference 3.

The "correct" identifications for this study were based
on a team effort which was used to minimize the problem of
consistency of manual classification. The problem of the
consistency in the definition of the images first become apparent
in the task of defining the truth data for developing the
automated classifier. It was found that for a number of
particles considerable disagreement was occurring between
qualified meteorologists. This problem is discussed in detail
in Reference 3. The initial truth data was picked by
Rosemary Dyer after detail discussion with the other two
authors. After noting the substantial disagreement with the
development of an exploratory set of algorithms using the
initial set of truth data at the same time carry out a study
to determine the severity of this problem.

* 7



The training set consisted of 403 patterns which have
been divided into four non-trivial classes, one trivial
class and a class of unclassifiable shadows. The trivial
class containing only three member was a streaker class for
which there are a number of strong characteristics which are
reflected in the eigenvector expansion and can easily be
identified by machine and thus the algorithms for this class
were developed by inspection of the projection on the eigen-
vector space. There is no disagreement among the human
classifiers as to correct identification of the members of
this class.

A second data set completely different from the 403
training cases consisting of 201 cases was selected as a set
to be analyzed by a number of different observers to allow a
study of the consistency of human observations. After
completing their individual analysis of the 201 case comparison
set, the two authors located at AFGL undertook a joint examina-
tion of a total of 2,104 images that included both the 403
training images, the 201 manual reference images and an addi-
tional 1500 images. These images were arranged in an order
so that the authors were not aware of the places in which the
original training or the 201 case manual reference set occurred.
A period of time not exceeding 1 hour was set aside each day
to work on this task to prevent fatigue which was known to
cause a change in the identification. When these inmges were
supplied to the two AFGL authors, the machine classifications
using the algorithms based on the original 403 case training
set were also furnished to improve their consistency with the
original training set. The results of this careful team
analysis were then taken as the "correct" or truth data for
this study. It should be remarked that a different set of
people or even the same authors performing a different time
would have somewhat different results, however, this was felt
to be the best result which could be obtained and will provide
a good basis for comparison of consistency. It is also the
best available basis for developing the machine classification
algorithms.

2.3 Desiqn of Machine Classifiers

The classifiers developed were Fisher classifiers which
were developed using the data vectors derived from the shadow
graphs. These signatures were preprocessed through an eigen-
vector transformation and then the Fisher classifier developed

0 using an independent eigenscreening scheme. The general
concept of the ADAPT Service Corporation's independent eigen-
screening approach to deriving classifiers such as the Fisher

8



classifier has been described in Reference (10) and in much
greater detail by Hunter2. This report includes an appendix
illustrating the difficulty with conventional iterative
eigenvector technique which are overcome by the ADAPT eigenvector
programs. The ADAPT approach may be briefly summarized as
follows. The training data vectors to be used to develop the
classification algorithm are first used to develop the
transformation to their eigenvector space (i.e. the optimum
empirical orthogonal functions, E.O.F.). This transformation
is then used to transform this data to the eigenvector space.
A screening procedure is then used to develop the Fisher
classifier where the screening is performed on the projections
on each of the eigendirections (E.O.F.'s) as opposed to
screening on the original variables. The screening also differs
from conventional Oforward sequential" selection in that the
screening decision to keep or reject a given eigendirection
in the classifier is based on an unbiased performance estimate
using the modified "one-out" method of Reference 11. Thus,
the approach from conventional screening primarily in two
ways: 1) the use of the components in eigenvector space as
independent variables, and 2) the use of an unbiased performance
estimate as opposed to the normal procedure of using dependent
or biased test results to make the screening decisions.

These procedures were used to develop five separate
algorithms for classifying dendrites, needles, columns and
plates. A fifth algorithm for classification of streakers
was developed by examining the projection of the data on the
first two eigendirections.

Thus, the machine classification scheme was built around
these five algorithms each of which was of the same mathematical
form. That is, each algorithm consisted of a vector onto which
all of the data was projected. This vector was selected to
maximize the ratio of the interclass dispersion to the intra-

class dispersion using the Fisher criteria for the first four
algorithms and by examination of the projection of the data
on the first two eigendirections for the fifth algorithm. These

(2) Hunter, H.E.; "Final Report, NCSC Scale Model Classification
Potential", Contract N61331-79-C-0038, ADAPT Report 80-4,
DTIC #AD-B062 5576, Dec 1980.
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five algorithms were utilized to identify the most likely
class by calculating the five likelihood ratios based on the
detection statistics obtained by applying each of these five
algorithms. The algorithm displaying the highest likelihood
ratio was used to define the class to which the shadow graph
belonged.

Definition of Features

The objective features which are used for this analysis
are the E.O.F.'s or the eigenvectors of the variance-covariance
matrix associated with the 403 training data vectors as described
in Section 2. These features have the advantage that they are
orthogonal and are complete; that is, all of the features have
been constructed which are required to completely define the
variation in the data. Recently there has been considerable
discussion in the literature (12), (13) of the question of the
significance of the higher order eigenvectors. The techniques
which are suggested for demonstrating this significance are
clearly stated as being sufficient but not necessary. Our
experience with several hundred eigenvector problems has shown
that these criteria are very conservative and often result
in the rejection of the most significant data for a difficult
problem. We have found the most effective measure of signi-
ficance is the usefulness of the eigenvector (that would be
used for any other feature) in either the regression or
classification algorithm. A possible reason this approach is
not used more in the literature is that screening decisions
are usually based on dependent (i.e. biased) test results
instead of independent tests. The ADAPT techniques base'these
decisions on independent tests!

One reason the method of Reference (12) is overly re-
strictive is that if we are considering a higher order eigen-
direction, (for example, the Nth) the random vectors model the
entire reconstruction rather than the portion using only greater
than the Nth terms. A less conservative approach would be to
reconstruct the data vectors using the first N eigenvectors,
substract this reconstruction from each of the data vectors and
then construct the eigenvector expansion from the remaining
portion of data vectors and compare the eigenvalues associated
with this expansion with that generated from a set of correspond-
ing random vectors. The computation involved in this would be
far greater than that of the method given in Reference (12)
and it still would yield a sufficient but not necessary condition.
For the present study, we have found that significant information
can be found up to and including the twentieth eigenvkctor.

10



A second problem associated with optimal empirical
functions or eigenvectors is that, in general, the iterative
techniques for finding eigenvectors which appear in many
of the statistical packages do not produce correct eigen-
vectors for the higher order eigenvectors when the data set
involved is large and/or noisy. This may be easily demon-
strated by inserting relatively simple sets of vectors into
these and noting it is possible to obtain more eigenvectors
having positive eigenvalues from these procedures than
would be possible with a correct derivation. This is
illustrated in the appendix to Hunter2 .

Performance of Individual Algorithms

Three types of classification algorithms were derived
and later combined into a number of different schema for
performing the required separation into the six classes.
The first type of classification algorithm would be more
properly called a detection algorithm. This type of algori-
thm was developed to detect a given class versus all other
classes. For this type of algorithm, Class 1 was made up of
the class to be detected. Class 2 was made up of all of the
other classes of interest and the miscellaneous and streakers
were omitted from the algorithm development.

The second type classification algorithm developed
was the classification of one class versus the second class.
In this case, only two classes of interest were used in the
algorithm development with Class 1 being one of the classes
and Class 2 the other class. All other classes as well as
the miscellaneous and streakers were omitted from the algorithm
development.

The third group of classification algorithms is actually
a special case of the first two. In this case, two classes
were separated from the other two classes. For example,
Class 1 could be dendrites and plates and Class 2 would 

be

needles and columns. Again, miscellaneous and streakers were
omitted.

Table 1 presents a summary of performance of all of these
algorithms. The performance given is in terms the Fisher
parameter and an equivalent probability of error. The Fisher
parameter is the parameter which is minimized by the Fisher
classifier and is simply the ratio of the sum of the standard
deviations of the two classes used to develop the algorithm
(the within class variation), to the distance between the
means of these two classes (the between class variation) when

11
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the classes are projected onto the Fisher derived optimal
separation direction. The equivalent probability of error
is included because the non-linearity of the Fisher parameter
makes it difficult to grasp its physical meaning. We define
the equivalent probability error as the probability of making
any error in the classification which would be associated
with a particular Fisher parameter for a classification where
the standard deviation of Class 1 equals the standard de-
viation of Class 2. This definition has the advBntage that
it allows a unique relationship between a probability of
error and the Fisher parameter. In general, the probability
of error will depend on both the Fisher parameter and the
relative sizes of the standard deviation of the two classes
and the threshold selected. All of the performances given
in Table 1 are based on the modification of the Lachenbach
(11) fone-out" method. This modification is to use groups
of observations rather than single observations in the
procedure.

In examining Table 1, it is useful to realize that human

classifiers tend to have probability of errors ranging from
0.25 to 0.65 as compared to the correct classification and
from 0.25 to 0.40 in terms of agreement between the same person
performing the classification at different times. These results
are discussed in detail in Section 3.0.

The first column of Table 1 defines the algorithm and
associates it with one of the three groups of algorithms
previously described. The next two columns of Table 1 define
the members of the three classes used in the development of p
the Fisher algorithm. Where Class 1 is the first class in
the development of the Fisher algorithm, Class 2 is the
second class in the developmant of the Fisher algorithm and
Class 3 are those classes which were omitted from the develop-
ment of the algorithm. The fourth and fifth columns give the
Fisher parameter and equivalent probability of error, respectively.

2.4 Definition of Classification Schema

The information presented in Table 1 was used as a basis
for selecting two schema for combining these algorithms into

a classification decision in an automated manner. Figure 3
presents a diagram of the two schema which were developed for
this study.

l-Step Classification Schema P

The one step schema shown at the. top of this figure
represents the simplest approach to using the algorithms to
make the decision between which of the six classes; that is,
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1) dendrites, 2) needles, 3) columns, 4) plates, 5) streakers,

and 6) miscellaneous or unclassifiable each particle belonged.
It consists simply of processing an unknown particle data
vector through the five detection algorithms and comparing
the projection of the particle on each of the five Fisher
directions with the statistics of the projection of the
training data on these directions. Based on this projection
and the statistics of the training data, one can calculate
a likelihood ratio that the particle belongs to the class
for each of the five algorithms. The likelihood ratios are
then compared with a threshold and if none of the likelihood
ratios exceed this threshold, the particle is considered
unclassifiable (i.e. a member of the miscellaneous class).
If one or more of the likelihood ratios exceeds the threshold,
the particle is associated with the detection algorithm for
which the likelihood ratio is the greatest.

This schema is closely related to a maximum liklihood
ratio approach and, in fact, will reduce to a maximum likeli-
hood ratio for those special cases for which the Fisher classifier
reduces to the maximum likelihood ratio classifier. However,
this approach results in a significant reduction in the computa-
tion required to apply the algorithm. It also provides for
considerable additional flexibility since both the statistics
of the training data and the characteristics of the individual
algorithms can be modified by an appropriate input. Thus, the
algorithms may be adjusted or tailored to specific apriori
information without a rederivation of the entire algorithm.

2-Step Classification Schema

Figure 3B is an example of a modification of the simple
schema shown in Figure 3A which is possible by adding a single
additional algorithm and replacing one of the algorithms to
overcome a particular difficulty with the algorithms. Examina-
tion of Table 1 shows that all four of the most important
algorithms used in the schema of Figure 3A have equivalent
probability of errors of less than 10% except for the column
detector algorithm which has equivalent probability of error
of 27%. Further examination of Table 3 suggests that if the
columns were detected using a two step procedure of first
detecting combinations of columns and needles and then separat-
ing the columns from needles with the column versus needle
classification algorithm, this probability of error might be
reduced to approximately 22%. Thus, the schema shown in
Figure 3B was developed to implement this approach.

14
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Initially, the two step schema shown in Figure 3B
is essentially identical to the one step shown in Figure 3A
with the exception that the column detector has been replaced
with the column plus needle detector algorithm. If the likeli-
hood ratio is less than the threshold or if the maximum
likelihood ratio is associated with the dendrites, needles,
plates or streakers, the procedure and results are identical
to the one step schema shown in Figure 3A. However, if
the maximum likelihood ratio is associated with the columns
and needles class, the data vector associated with the
particle is also processed through the columns versus needles
classification algorithm. The results of this classification
are then compared with the second largest likelihood ratio and
a decision is reached as to whether the particle should be
called a column, a needle, or a miscellaneous particle.

2.5 Performance of Classification Schema

Confusion Matrix Performance Measure

The performance of the raw algorithms was summarized in
Table 1 in terms of the Fisher parameter and its associated
equivalent probability of error. However, the performance of
interest is that of the combination of these algorithms for the
overall task of identifying the particle type associated with
any data vector. Although the Fisher parameter is an excellent
measure of performance of the individual algorithm, it is not
suitable for evaluating this multiple class schema or combination
of algorithms. One of the more efficient measures of performance
for the combination of algorithms is the confusion matrix. This
is a matrix which has the class as both of its axis. One axis
in our paper, the vertical axis, represents the actual class of
the particle the other axis in our paper, the horizontal axis is
the class which the particle was identified as. Thus, the
diagonal of this matrix is simply the number of correct classi-
fications for each algorithm.

Figure 4A presents this confusion matrix for the application
of the one step algorithm to the 403 training cases using the
group out modification of the Lachenbrach (11) one out method.
Examining the first row of this matrix, we see that from the
first class which had a total of 63 members, 46 of these were
correctly identified as dendrites, none of them were incorrectly
identified as needles, four of them were incorrectly identified
as columns, II of them were incorrectly identified as plates,
none were incorrectly identified as streakers and two of them
were incorrectly identified as miscellaneous. Similarly, one
can get the exact performance for each of the other classes by
examination of this matrix. It is somewhat more useful to
normalize the confusion matrix by dividing each row by the
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FIGURE - 4 COr,.FUSION MATRIX FOR GROUP-OUT TESTING OF

THE TRAINING SET OF CLOUD PARTICLES

A,, cOrusIoN MATPIX BASED ON COUTS

ACTUAL CALLED CLASS

CLASS 1 . 3 4 5 6
1 46.00 0.0 4.00 11.00 0.0 2.00

2 1.00 90.00 11.00 0.0 0.0 3.00
3 6.00 8.00 62.00 3.00 0.0 10.00

4 8.00 5.00 9.00 90.00 0.0 8.00
5 1.00 0.0 0.0 0.0 2.00 0.0
6 1.00 10.00 6.00 4.00 0.0 2.00

8' NCPMALIZED CONFUSION MATPIX

ACTUAL CALLED CLASS
CLASS 1 2 3 4 5 6

1 0.73 0.0 0.06 0.17 0.0 0.03
2 0.01 0.86 0.10 0.0 0.0 0.03
3 0.07 0.09 0.70 0.03 0.0 0.11
4 0.0, 0.04 0.07 0.75 0.0 0.07

5 0.33 0.0 0.0 0.0 0.67 0.0

6 0.04 0.43 0.26 0.17 0.0 0.09

FIGURE - 5 CONFUSION MATRIX FOR THE MANUAL REFERE'CE
SET OF CLOUD PARTICLES

CONFUSION MATRIX BASED ON COUNTS

ACTUAL CALLED CLASS

CLASS I 3 4 5 6

1 37.00 0.0 1.00 4.00 0.0 0.8

3.00 16.00 5.00 2.00 0.0 1.o
3 -#6.00 2.00 32.00 10.00 0.0 3 Oo0
4 7.00 0.0 3.00 13.00 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 .r,

6 1.00 4.00 1.00 7.00 0.0 ,".0 7
NOPMALIZED CONFUSION MATRIX

ACTUAL CALLED CLASS

CRASS 3 ' ,

1 0.88 0.0 0.02 0.10 0.0 0.0

0.11 0.59 0.19 0.07 0.0 0.0.
3 0."0 0.02 1,4' 0.11 0.0 0 0

0.30 0.0 0.13 0.57 0.0 0 0

5 0.0 0.0 0.0 0.0 0.0 0 0
0 .

t "  0 . 2 5 0 .0 1 , 0 . , ,' 0n0 .

I
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actual number of members of that class, thus, each value
becomes the decimal fraction of identifications. This we
call the normalized confusion matrix and is shown in Figure
4B for the reference one step algorithm corresponding to
Fisher 4A. Thus, once again examining the first row, we see
that 73% of the dendrites were correctly identified as dendrites
and 6% of the dendrite incorrectly identified as columns,
17% incorrectly identified as plates and 3% incorrectly identified
as miscellaneous.

The confusion matrix provides us a complete analysis of
the performance of the algorithm. However, it Ias the dis-
advantage that it is rather cumbersome to compare a number of
algorithms using the confusion matrix. One relatively simple
reduction of this cumbersomeness is to deal only with the
diagonal of the confusion matrix. Referring to Figure 4B,
we see that this confusion matrix has a diagonal having the
values .73, .86, .70, .75, .67 and .09. This tells us that
the reference one step algorithm correctly identified 73% of
the dendrites, 86% of the needles, 70% of the columns, 75% of the
plates, two-thirds of the streakers and 9% of the miscellaneous.
Thus, the diagonal of the confusion matrix can by itself give
us considerable information regarding the performance of the
classification schema. It still defines the performance in
terms of probability of correct identification (or probability
of error) for each of the classes. What we are missing is
how the errors are distributed amongst the remaining classes.
Finally, if one were to construct the weighted average of the
normalized diagonal where each of the diagonal values were
weighted according to the total membership of the corresponding
class in the set and the resulted weighting average expressed
as a percent, one would have the percent of correct identifica-
tions, which will be used as the primary comparison method in
Section 3. Thus, one may view the confusion matrix as a
generalization of % correct for a binary class problem to a
multiple class problem.

Comparison of Classification Performances for Schema and
Modifications

* In evaluating the performance of these classification
schema, the reader is reminded that the most significant per-
formances are those associated with Classes 1 through 4 and
that the performance of manual classification tends to range
between 35 and 75 in terms of the weighted average of the
diagonal. The reason for the lesser importance of classes 5
and 6 are: 1) class 5 only has three members and thus makes
a very small contribution to the weighted average and class 6
also only as 23 members. It should also be noted that very
little effort was exerted on developing a highly efficient
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streaker (class-5) detection algorithm since apriori procedures
are already available which can be used to prescreen the
streakers if necessary. The miscellaneous class, class 6,
can be eliminated from the procedure by adjustment of the
likelihood ratio thresholds. Complete elimination of any
membership of this class does not significantly effect the
overall performance of the schema.

Performance on Selected Data Set

Table 2 presents a comparion of the performance of a
number of variations of one and two step schema on the train-
ing set of 403 cases. These performances are based on the
group-out test modification of the Lachenbrach (11) one-out
method. The first column of Table 2 defines the schema used,
i.e. whether it is a one step or two step and if applicable
a descriptive name. The next three columns of various thres-
holds which can be set to modify the schema. Results are
given for three of the more significant thresholds. These
are the threshold on the likelihood ratio (LR), the threshold
on the dendrite detection algorithm and the threshold on the
second step algorithm for separating needles and columns.
The fifth column of Table 2 indicates whether the schema was
applied to rotated or unrotated data. The last six columns
give the diagonal values of the confusion matrix associated
with each of the six classes. The first case shown in Table 2
is the nominal one step algorithm for which the confusion matrix
was given in Figure 4. For this schema, the likelihood threshold
was set at an absolute value of one thus it is indicated as
1.0A. The dendrites threshold was set at the 0 value which
corresponds to the minimum total errors using the Anderson-
Bahadur(14) approach and since this was a one step algorithm,
the second step threshold is not applicable. All of the data
dscussed to this point in the paper has been unrotated data.
Examination of the last six columns for the 1-step nominal
schema shows the diagonal values which were'given in Figure 4.

This training set of data differed considerably from the
two test sets which will be discussed later. The training set
was a set of data which was picked because it contained unusually
good examples for real data and an unusual variety of cases.
Thus, the training set could not be considered a typical data
set but rather an unusually pure set.

The nominal schema was modified by varying the threshold
for the likelihood ratio through a number of different values
and the best value determined experimentally. The characteristics
and performance of this algorithm are entered in the second
row of Table 2. It was found that a slight improvement was
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possible by using a relative rather than an absolute threshold
on likelihood ratio. In this case, the relative criteria
was that a particle was identified as miscellaneous if the
largest likelihood ratio exceeded the second largest likelihood F

ratio by less than five percent. This is indicated by 1.05
in the L/R threshold column. The major reason for this
improvement was that the miscellaneous class was reduced to
only five particles (none of which were correctly identified!).
This relative threshold was introduced in the hope that it
would be a better approximation to human determination of
unclassifiable. However, the fact that the best use of this
threshold was essentially to eliminate the miscellaneous class
indicates that neither the absolute or relative thresholds
result in a good approximation to what the human does in
determining a difficult or unclassifiable particle. This was
further verified by use of considerably larger values of the
relative ratio where the total number of the miscellaneous class
were approximately equal to that of the human classifiers for
the training data but the agreement with the human identification
as miscellaneous was still extremely poor. This is in agreement
with the conclusion of Section 3.0 that different sets of
particles were difficult for the machine than for human classifiers.

The information in Rows 3 and 4 compares the performance
of the best one step and the best two step algorithms. We see
that on this training data set the introduction of the second
step has made relatively little difference on the performance
of the algorithm. There has been a slight improvement of the
identification of the needles and an insignificant decrease in
the identification of the columns. The fifth row illustrates
the type of effect that can be achieved by modifying the threshold
on the second step algorithm by approximately a half of the
average standard deviation of Class 1 and Class 2 for this
algorithm. The effect has been to significantly increase the
performance in detection of needles at the cost of decreasing

4the detection performance for the columns. The effect of a

similar change in this threshold in the opposite direction is
shown in row six where we see the effect is in the opposite
direction but considerably smaller.

4 The next two rows , have been included to show the effect
of rotating the data. One of the criteria used in defining
the preprocessing of the data vector was to minimize the
effect of the particles orientation. The first method of doing
this was to eliminate the broadside particles from the study

since these could be accounted for simply by rotating them
90 degrees as part of the testing procedure. The second approach
was to include rotationally insensitive characteristics such
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as the Fourier transform in the data vector. To evaluate the
effectiveness of these approaches in reducing the sensitivity
to rotation, the particles were rotated until they had a
minimum ratio of the width to length. Rows 7 and 8 show
the performance of both the best one step and the best two
step schema on the rotated particles. The conclusion from
comparison of these performances with the corresponding
performance on the unrotated data is that these algorithms
are as hoped relatively insensitive to the particle's
orientation. The differences which were observed are quite
logical. We note that, in general, the effect of the rotation
has been to decrease the performance in the detection of the
dendrites columns and plates and to increase the performance
for the classification of the needles. The increase of the
performance for the classification of the needles is clearly
the expected result of rotation. At first, the decrease in
performance of the other three classifications might be
surprising. Examination of the detail effect of the rotation
showed that in addition to making the orientations of all of
the particles more similar, the rotation introduced noise due
to the finite size of the particles. That is, the edges of the
rotated particles tended to be rougher than the edges of the
unrotated particles. This introduction of roughness especially
for small plates and columns tended to make them look more
like dendrites.

The final two rows of Table 2 show the effect of changing
the dendrite threshold by one standard deviation of the dendrite
training data to weaken the detection of dendrites.

0 Performance on Manual Reference Data Set

Table 3 shows the comparison of the same schema performances
as Table 1 when applied to the 201 case manual reference test
set. These are 201 cases which were not part of the training
data and which were obtained from typical flights rather than
unusually good flights. In fact, postmortem analysis suggests
that these flights represented particles which were less well
defined then the average case. However, this is the test set
which was used to evaluate the manual performances which
were discussed in Reference 3 and led to the conclusions that
manual classification varied between 35 and 75% correct
identification. The format of Table 3 is identical to that of
Table 2.
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Comparison of Tables 2 and 3 shows that, in general,
the performance on the dendrite detection has significantly
improved and that the performance on the needles, columns
and plates has degraded. This variation in performance is
probably typical of variations that can be expected between
various data gathering flights depending on the characteristics
of the particles. Examination of the particles used on the
201 case manual reference set shows that there are many more
particles where it is extremely difficult to decide between
needles, columns and plates then was the case in the 403 case
training set. The performances suggest the dendrites included
in the manual reference set were in general better defined
then those in the training set. However, we see that the
effect of changing the likelihood ratio threshold criteria
is far greater for the manual reference set then it was for
the training set and has resulted in a performance significantly
improved over the nominal performance especially for the
detection of needles, columns and plates.

This example as well as many others which were observed
during this study shows that the design of the algorithms for
this problem is very sensitive to the particular data set used.
For this reason, it seems extremely unlikely that artificially
generated particles would lead to algorithms which were useful
for the classification of real data. It also suggests that
the schema developed must include considerable flexibility to
allow the user to adjust the performance of the algorithm to
any given data set. This is, of course, possible because the
user may apply the algorithms and then manually examine a
limited number of the cases to see if the performance is reasonable.
By examining the confusion matrix, relative to this determination
of correct performance, he can select the thresholds and if
necessary the statistics for the algorithms used in the schema.
In this way, the algorithms may be optimized for the particular
data set and purpose for which the analysis J!; performed. It
would be reaeonable to consider these schema "Manually Adaptive".
However, the nominal and best one step and two step algorithms
will provide significantly better performance against real data
sets then can be achieved with manual classifiers. This conclu-
sion is reached by comparing the general level of performances
shown in Tables 2 and 3 with the performances ranging from 35%
to 75% which are discussed in Reference 3.

It is encouraging to note that despite the sensitivity of
the detailed performances to the data set, the effect of rotation
on the manual reference data set is also smal in agreement
with te effect observed on the training set. Since these
data sets are clearly extremes or nearly extremes in real
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data, it seems reasonable to assume that we have been
successful in at least reducing the effect of rotation to an
insignificant problem as compared to other problems associated
with the development of these classification schema.

Table 3 illustrates the reason why we have included Rows 9
and 10 in Tables 2 and 3. Although the weakening of the
dendrite algorithm appeared to significantly decrease the
performance for the 403 case training set, this was not the
case for the manual reference set. Although the direction
of changes in performance were similar, the reduction in the
threshold value for the dendrite algorithm, decreased the
dendrite detection performance of the other three algorithms
considerably more than for the training set. Figure 5 shows the
motivation for decreasing this threshold. Although the diagonal
of the confusion matrix presented in Table 3 indicates that
only 34% of the columns were correctly identified by the
nominal algorithm, the confusion matrix shows that 49% of
these columns were called dendrites. Thus, the weakening
of the dendrite algorithm by increasing its threshold which
is accomplished (by putting a negative constant on the cal-
culation of the detection statistic) will prevent many of
these columns from being called dendrites. In this case, the
column algorithm is strong enough to identify a significantly
greater number of the columns correctly while the dendrite
algorithm was good enough that even after decreasing its 9
performance it still yields good performance against this
data set. When the overall performance of an algorithm is
unsatisfactory, examination of the confusion matrix can allow
us to determine where the problem is and to suggest methods
for improving the performance of the algorithm simply by
adjusting the thresholds. These confusion matrices can also
be used to understand where modification of the statistics
associated with the projections of the classes on the Fisher
direction might be adjusted to further improve their performance.

p
Performance on Proof Test Data Set

Figure 6 presents the complete confusion matrix for the
application of the best one step algorithm to the 1500 case
proof test data set. The performance of this larger set is
between the training and manual referee sets. P

2
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FIGURE - 6 COMFUSION MATRIX FOR 1500 OBJECT TEST SFT

COtIFUS101 MAIRIX BASED ON COUNTS

ACTUAL CALLED CLASS

CLASS I 2 3 4 5 6
1 214.00 8.00 37.00 92.00 2.00 39.00

2 7.00 196.00 19.00 0.0 1.00 3.00
3 1.0.00 13.00 142.00 13.00 1.00 54.00
4 C6.00 12.00 56.00 293.00 0.0 41.00
5 0.0 0.0 0.0 0.0 1.00 0.0

6 .00 38.00 5.00 15.00 0.0 8.00
NOPRMALIZEO cotirtUSloi MATIRIX

ACTU L CALLED CLASS

CLASS 1 2 3 4 5 6
3 0.55 0.02 0.09 0.23 0.01 0.10

0.03 0.87 0.08 0.0 0.00 0.01
3 0.15 0.04 0.41 0.04 0.00 0.16
"* 0.14' 0.03 0.12 0.63 0.0 0.09

5 0.0 0.0 0.0 0.0 1.00 0.0
6 0.06 0.5,4 0.07 0.23 0.0 0.11
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3.0 COMPARISON OF HUMAN AND MACHINE
CLASSIFICATION OF POORLY DEFINED
PATTERNS

The problem addressed in this report differs from many
problems in pattern recognition in that a significant number
of the images to be classified are so ambiguous that there
is no consensus on their correct identification. Therefore,
even human classification is highly dependent on the individual
and the individual's physical and mental condition at the
time the classification is made. It is clear that successful
development of a pattern recognition algorithm which could be
implemented on a computer offers many potential advantages
especially with respect to consistency for a problem such
as this. However, these same characteristics can also be
expected to degrade the performance of the machine classifier
relative to the "trainer".

The purpose of this section is to present the comparison
of the compatibilities of the machine classifier which was
developed for these cloud particles with the performance of
human classifications.

In general, both manual and machine classification were
available on the following three sets of data: 1) the 403
case training set, 2) the 201 case manual reference set, and
3) the 1500 case proof test set. Except for the 1500 case
proof test set, at least two different manual classifications
and two different machine classifications were made for each
of these data sets. For each of these three data sets, the
manual classification arrived at by the team effort and defined
as the correct classification was available. For the 403
training cases, there was also the initial manual identification
used to derive the first exploratory algorithms. We shall
refer to this manual classification as the original training
classification.

3.1 Percent Agreement Between 15-Human and 2-Machine Classi-
fications

The performance of both the manual and machine classifiers
was compared by calculating the percent agreement between each
classifier and expressing this in decimal form. Table 4 presents
these percent agreements for the correct and original training
manual classifications and for machine classifications using
the algorithms derived from the original training data and
an algorithm derived from the "correct" set of training data.
These two algorithms are identified as ORIG-ALG and COR-ALG,
respectively.
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* The machine classification performances shown in
Table 4 are based on a slight modification of the unbiased
ione-out method" of Lackenbrach and Mickey (ref 7). The
modification consists of using small groups "nstead of
individual storms in the process.

The agreement matrix, or Table 4, not only shows the
agreement of each of the classifiers with the correct
classifications but also shows the agreement between each
of the classifiers considered. The first two columns label
the rows of the matrix. The first column provides a classifier
ID number and the second column is a descriptive title for
the classifier. Similarly, the first or top row also identifies
the classifier using the ID number from Column 1. The first
column of decimal agreements3under ID of 1, lists the agreement
between each of the classifiers and the correct answer, the
second column, identified as 2 compares the performance of
the second classifier with each of the other classifiers and
so forth. Similarly, each of the rows compares the performance
of the classifier identified to the left of that row with
each of the other classifiers. Thus, the matrix is a symmetric
matrix with a unity diagonal. To simplify the reading of the
table, we have only shown the lower half of the matrix since
the upper half presents the same information.

Table 4 shows that the agreement between the correct and
the original training data was of the same order as the agreement
between the machine classifications and the correct identifica-
tions. Realizing that the original training classifications
were made by experienced meteorologist in the field who was a
member of the two person team to select the correct classi-
fications, it becomes apparent that there is a major problem
in obtaining consistency uith manual classifications in
addition to the problems of fatigue and effort required to
evaluate many hundreds of thousands of images.

Table 5 presents information similar to Table 4 for the
201 case reference manual test set. For this test set, there
were 14 sets of manual classifications in addition to the
'correct" identification of the particles. There are also the
same two machine classifications as shown in Table 4. In
addition to the team effort to define the correct classifications
each of the authors of this paper made their own classifications.
It should be pointed out that these classifications were made
by the authors after numerous discussions both of the problem
of consistency in classification and general agreement among

(3) Note, decimal agreement may be interpreted as a weighted

average of the diagonal of the confusion matrix, see Section

2.5 for details. 28



TABLE 4

AGREEMENT MATRIX COtPARItIG PERFOPWtAtICE OF MAtt IAL AN MACHIItE CLASSIFICAIfl or to$s I A ItuIr; rI (I,

2 3 4
1 COPPECT 1.00
2 R.OYER 0.6' 1.00
3 OPIG-ALG 0.59 0.68 1.00
4 COP.-ALG 0.73 0.55 0.60 1.00

AVERAGE ERROR IS 0.6"4483E 00

TABLE 5

AGREEMENT MATRIX COMPARING PERFORMANCE OF MANUAL AND MACHINE CLASS. OF 201 REF MANUAL PARTICLES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 CORRECT 1.00
2 R.DYER 0.67 1.00
3 M.GLASS 0.73 0.60 1.00
4 H.HUJTER 0.66 0.67 0.57 1.00
5 5 H.H.-2N0 0.74 0.69 0.66 0.84 1.00

* 6 MET-A 0.44 0.47 0.52 0.41 0.44 1.00
7 MET-8 0.46 0.48 0.48 0.43 0.50 0.53 1.00
8 METB-2NO 0.61 0.62 0.52 0.69 0.69 0.48 0.50 1.00

- 9 MET:G-1 0.34 0.42 0.37 0.34 0.34 0.52 0.48 0.40 1.00
10 MET:D-I 0.66 0.61 0.61 0.68 0.75 0.41 0.46 0.59 0.29 1.00
It TECH:O-2 0.53 0.49 0.48 0.58 0.60 0.38 0.44 0.55 0.33 0.58 1.00
12 TECH:G-2 0.66 0.68 0.56 0.72 0.75 0.39 0.40 0.66 0.27 0.65 0.53 1.00
13 TECH:G-3 0.65 0.65 0.67 0.68 0.73 0.49 0.49 0.55 0.43 0.66 0.52 0.66 1.00
14 TECH:H-1 0.65 0.66 0.60 0.81 0.77 0.42 0.42 0.66 0.35 0.64 0.52 0.67 0.65 1.00
15 H-1:2tf0 0.66 0.61 0.60 0.69 0.76 0.44 0.47 0.64 0.36 0.63 0.55 0.66 0.63 0.71 1.00
16 ORIG-ALG 0.55 0.44 0.38 0.49 0.42 0.24 0.24 0.40 0.21 0.41 0.33 0.48 0.37 0.48 0.42 1.01

A 17 COR-ALG 0.53 0.39 0.36 0.38 0.40 0.20 0.25 0.34 0.14 0.44 0.32 0.40 0.33 0.37 0.41 0.5% 1.00

" AVERAGE ERROR IS 0.514806E 00

TABLE 6

AGREEMENT MATRIX SHOW" IG MACHINE PERFORMACE ON 1500 PROOF TEST PARTICLES

I] r~ppl C 1 1.00
VP 1 -ALG 0.45 1.00

3 COP-ALG 0.58 0.54 1.00

AVERAGE EPPOP IS 0.518888E 00
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each other as to how questionable cases should be handled.
Despite this collusion prior to making the classifications,
the agreement between the original classifications of the
authors and the correct values are still less than 75%.
The agreement amongst the authors is even less.

In addition to the independent classifications by the
three authors, four meteorologists and four technicians were
asked to manually classify the particles. The letter used
to identify the technician is the first letter of the author
who instructed the technician. For e>mple, technician H-1
was instructed by Hunter. Two of the meteorologists had as
part of their tasks, the task of operationally performing
these classifications as the data was being gathered for
notation on the data logs. It was found that, in general,
there was considerably more scatter among the meteorologists
then the technicians and the technicians on the average tended
to do somewhat "better" than the meteorologists. However,
neither group performed significantly better than the machine
classifications.

It is suggested that the additional knowledge that the
meteorologists have on the subject is actually a disadvantage
in tasks such as this where the object is to identify a
shape regardless of its meteorological implications. It is
believed that some of the meteorologist who were aware of
the conditions under which the data was taken where allowing
their expectations to bias their decisions at least on the
questionable cases. It should also be noted that in addition
to the lack of agreement between the meteorologists and the
correct answer, similar lack of agreement existed between all
of the technicians and authors involved in this manual study.
We must, therefore, conclude that, in general, it is unlikely
that one would find significantly greater than 50% agreement
between any one who was trained to do these classifications
and th, instructor. Thus, it would not be possible to solve
the problem of manually classifying large numbers of particles
by recruiting a large force of technicians to accomplish this
unless agreements of less than 50% were acceptable.

A second question is that of how consistent is one observer
with himself. To address this question, three of the observers
were asked to repeat their classification of this 201 reference
manual particle set at a later date. The results of the second
evaluation shows agreements ranging between 50% and 84%.
However, it should be noted that the two highest agreements were
the author and the technician concerned with the development of
the algorithms who had continued to work with the data on a daily
basis and who are acutely aware of the consistency problem.
Thus, we conclude that even an individual working with the data
on a daily basis is highly likely to have significant disagreement
between his own classifications of particles on a daily basis.
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Finally, we note that on a manual reference set even the
machine classifications are somewhat inferior to those which
were obtained on the 403 case training set. In making
comparisons across the two training sets, it is important
to recognize the fact that the 403 training set was a very
special set of data in which the number of particles were
relatively well balanced between particle types and more
importantly, the data had been selected since most were "good
examples" of the particle types being examined. Thus, although
they were based on real data, the 403 case set had been selected
from a time period during which exceptionally well defined
particles occurred. Thus, the results of Table 5 are probably
more realistic.

To further investigate this question, an additional set
of 1500 cases were identified as part of the effort of defining
the correct variables and, in fact, both the 403 case training
set and 201 case reference manual set were embedded within a
total set of 2,104 cases so that the team identifying correct
particles would not know at what time they were working with
which group of particles. Thus, the remaining 1500 cases
provided an additional set of data for which correct answers
were known and which could easily be processed through the
machine classifiers to provide information regarding the homo-
genuity of the 201 reference manual particle set. Table 6
compares the performance of the two machine classifications and
the correct manual identification for the 1500 additional
proof test cases. Here we see a slight improvement of the
machine classifications relative to Table 5 but still signi-
ficantly less than that observed in Table 4. From the
examination of these tables, we conclude:

1) that machine classification using these relatively
simple algorithms can be expected to yield performances
approximately equal to that which can be achieved by training
either meteorologists or technicians to perform this task.

2) That machine classification has significant advantages
over manual classifications in terms of self-consistency in
addition to the obvious advantage in fatigue and cost.

3) If one uses the machine identifications as "correct"
rather than the results of a particular manual classification
self-consistency implies 100% acorrect" classification.
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3.2 Analysis of Manual Performance

The agreement of the manual classifications was examined
for each of the particles. As a result of this examination
the particles for which 100% agreement were identified and
those particles for which the least agreement was achieved
were also identified. Figure 7 presents typical examples
of those particles for which everyone or at least nearly
everyone was in agreement. Figure 8 presents typical examples
of those particles in each type for which the greatest
disagreement occurred. In both of these, the class identified
first is the correct classification of the particle and the
second is the classification given by the plurality of the
manual classifiers. Obviously, in the case of Figure 7, these
two are in agreement. For Figure 8, we have several particles
for which they are in agreement and several for which they are
not. If they are in agreement that indicates that the plurality
of the classifiers (not including second tries by the same
observer) did agree on the correct classification, however,
this was never more than three observers. In the cases where
they are different, the plurality was in favor of an identifica-
tion which disagreed with the correct identifications.

Examination of Figure 8 shows why there is such great
difficulty in getting agreement on these particles. Since
we are dealing with shape, size should not influence our
decision as to the particles class. However, the same shape
discontinuity on a large particle may indicate the broken
arm of a dendrite, whereas on a smaller particle this irregularity
might be due to the finite size of the pixels. The size of
particle in relation to size of discontinuity at which these
two different phenomena occur is a very subjective decision
and will differ from one person to another. Similarity, the
length to diameter ratios at which one identifies an object
as a needle, column or plate, respectively, are also quite
subjective and will vary from individual to individual and may
also vary according to roughness of the particle or even orienta-
tion of the particle for different human classifiers.

3.3 Analysis of Machine Performance

The performance of both the manual
classifications and the two machine classifications on the 18
particles which were shown on Figures 7 and 8
shows that, in general, the machine had less difficulty with
the difficult objects then the people did.
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FICURE -7 CLOUD PARTICLES WHICH PROVED EASY TO CLASSIF7Y

**CLOCK : 4.422 %-,CLOCK : 4.422 *CLOCK : 4.422

CLASS:- COLUVIS CUASS: PLATES CLASS= PLATESr
itS: COLULtIS 2ND: PLATES 2N0= PLATES

-1 0* OL NUMBER 0000094sa no HOL NMBIER z 00000956 UO HOL NU038(0 00000969
o 0 ELAPSED TIME= t,'5183.93 00ELAPSED TitlE: 001364.69 0 ELAPSED TIME 12110.-01

I xxx XXXXXXX.X Xyxxxkx~z

2 XXXX XXXXXXXXXXX XXXXXX

3 XXXX xxxxxx XXXXXXXXXXXX XXX)X
4x XXXXXXXXXXXXXXXX XXXXXXXXXX
sxx xxXxxxXXxxxxXx xxxxxxxxxxx

6 xxx XxXXXXXXXXXXx XXYXXXXXXXX

7 xxxx XXYXXXXXXXXXX(XX XXXXXXXXXXXX

9x XX XXXXXXXXXXXXXX XXXXXXXXXXXXX

10 X XXXXXXXXXXX:XXX xxxtxxxxxxxxxx

11 xxxxxxxxxxxxxXXX xxxxxxxx~XXX

12 XXXXXXXXXXXXXXX XXXXXXXXXXX

13 XXXXXXXXXXXXXXXX XXXXXXXXXX
14 XXXXXXXXXC<XXXX XXXXXYX

1s XXXXXXXXXXXXX XXXX

616 XXXXXXXXXXXX
17 XXXXXXXXXXX

19 xxxxxxxxx
20 XXXXXXX
21 XXXXX
22 xx

*'CLOCK * 4.422 "CLOCK : 4.422 **CLOCK : 4.422

CLASS:- DENDRITES CLASS: COLUMNS CUASS: COLUMSS

* 2ND DENDRITES 2ND: COLWJES 2ND: COLUNS

-1 0 HOt NMBIER 00000983 00 HOL NMBSER :00001000 0.HOL NUMBER 00001003

0 0 ELAPSED TIME: 005671.27 00ELAPSED lTInt: 004147.21 00 LASD IE:01867
* I Xxx X XXXX

2 XXX XXXXX XXXXXX

3 XXX xxxxx XXXXXX

4 XXXX Xxxxxx XXXXX

6 xxx XXXXXX XXXXXXp
7 xxx XXXXXX XXXXXX

9 XXXX XXXXXX XXXXXXX

10 xxxxx XXXXXX xxxxxxx

*it xxxx xxxxxx XXXXXX

14 xxccX xniacx XXXOCXX

415 XXXXX xxxx XXXXXXX

16u XXXXXXXX XXXXX
17 XXXXX XXX(XX XXXXXXX

is XXXXX XXXX( XXXXXXX
19 XXXX xxx xxxxxX
20 XXXXXX xxxxxxx

21 XX(XXXX XXXXXXX

22 XXXXXX XXXXXX
23 XX XXXXXXX xxxxxx
24 XXXXXXXXXXXX xx
2S XXXXXXXXXXXX
26 )OC(XXX XXX
27 XXXXXXXXX XXXp
28 X XX(XXXXX XX
r9 XXCXXXXX X
30 XX

33



FIGURE -7 (CONT.) CLOUD PARTICLES WHICH PROVED EASY
TO CLASSIFY 14ANUALLY

CLASS= NEEDLES CLASS= NEEDLES CLAS7 OENDRITES
2NO= NEEDLES 2U: NEEDLES 2ND= DENDRITES

-1 #*R NIUMBER 00001041 * HOL NUMJYBER *00001051 *~HOL NMBER *00001067
0 *: ELAPSED TIMlE= 002109.56 N*ELAPSED TIMIE= 001008.42 a** ELAPSED TIMIE= 000909.14

2 x xxx XX
3 X XXc XXXX

5 x XX XXXXX
6 X xx XXXXX
7 X xxx XXXX

SXX XXXXX( XX
9 XXX XXXXXXX

1 0 xxx XXXXXXX

13 XX )XXXXXXX

14 xX XXXX XXXX
16 XX XX X x XXXI17 XX XXx XX XXX
18 XX xxxxX XXX

22 XXX XX
20 XX x )00()X

23 
XXXX

XX
XX
XXx

Sx

Sx

*x
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FIGURE - 8 CLOUD) PARTICLES WHICH PRO0VED DFFiTICULTI TO

'-CLOCK = 4.422 -CLOCK : 4.422 '.CLOCK : 4.42?

*CLASS: DENDRITES CLASS: PLATES CLASS: COLUHNLIS
*.2ND: PLATES 2ND: PLATES 210= COLIJIfis

* -1 O WD101PlMER :00000891 H"S N11PUNDER :00000894 t*1101 NPII3R ±00000916

0 "*ELAPSED TIME: 002100O.29 --m ELAPSED TIE: 004219.58 n ELAPSED TIMFz 001100.4.6
I XY~<XXXXX xxxXXX
2 XXXXXX XXXX XXX n
S XXXXXX XXXX xxxXX
4 XXXXXXXXX XXXX K
S XX> XXXXXXX XX XX
6 xXXXXXXXX X
7 XX>XXXXXXXXXXX
8 XXXXXXXXXXXXXX

10 XXXXXXXXXXXXXX
1* XXXXXXXXXXXXX

I S xxxxxxxxxxxxx

16 XXXXXXXXXXXXX

19 XX
20 XX

"-CLOCK ' 4.422 "*CLOCK 4.422 "CLOCK : 4.42Z

CLASS: NEEDLES CLASS: COLUMNS CLASS: COLUMN~S
2110: COLLOIS 2ND: PLATES 2110: PLATES

-1 "' O0 NUMBER :00000929 "' L W41PUIDER :00000962 ... 1401 PlUMER :00000965
0 "'ELAPSED TOME: 005422.50 "'ELAPSED TIME: 002013.00 ''ELAPSED TIME: 000976.76

2 XXX XXXXX XXXX

4 XX XXXXX XX

6 x XXXXX
7 XX

"CLOCK 2 4.422 "CLOCK 2 4.422 "CLOCK : 4.422

CLASS: PLATES CLASS: DENDRITES CLASS: DENDRITESI
2110: COLUIRIS 2N10= COLUMNIS 2110: COLUMOIS

-1 ~ HOL NUUMBER :00000986 "'HOL NlUMDER :00000989 "' L 11 NPUVOER :00000054
0 "'ELAPSED TIME: 004459.76 "'ELAPSED TIMlE: 121648.00 "NELAPSED TIME: 001395.59

2 XXX XXXXXX XXXXXXXXX
3 XXXX XXXXXXX XXXXXXXX
4 XXXX XXXXXXXX XXXXXx'vYX
S XXXX IXXXXXXXXx XXYXXXXXX
6 XXXXX XXXXXXXXX XXXXXXXXNx
7 XXXX XXXXXXXX xxxxxxxxXcg
8 X1CXXXXXX XXVXXXXXXX
9 X)xxyXXX xxxxxYxxx

10 XXX:XXXXNXXX X X\X4XXYY"<X
11 XXXXXXYXXXXXXX XX XXXXXXXXXXX

* ,-~ 2 XXXXXXXXXXXXXXXXXX XXXXXXXXXX
.13 XX(XXXXXXXXXY',XXXYX IXXXXXXXXXX
14 XXEXXXX'XXXXXXXXXx XXYXV.<<XYXX
is XXX XxXX>AOXXXV.X XXXXIYXX4Ec<

£6 XXXXXXXXXX<XX XXXIX\XX<XX
£7 XXXXXX4xx\ 'MXXXlx

Is X,<:Xxyyx,:XxXXy'AXXxx
19 V:> XXX x xlo

20 X X\'VV. x x

XXX- ... x

', 0...

o 35U



Additional insight into the performance of the machine
classifiers can be obtained by presenting the confusion
matrix for the machine classifications. The confusion matrix
(See Section 2.5) has the actual class along one axis and
the class which the particle was called along the other axis.
Tables 8 through 10 present the confusion matrices for the
application of the two machine classifiers to the three
data sets. The six classes shown are the five classes for
which classification algorithms were developed plus a sixth
unclassifiable class. This class is defined as any class
for which the likelihood ratios associated with the other
five classes were all less than unity.

Examination of Figures 4 - 7 showsthat, in general,
Class 6 is very poorly identified. This indicates that those
particles which are difficult for humans to classify as defined by
the correct classification set are not the same as those
classes which are difficult for the machine to classify.
It should also be noted that the classification of the columns
is significantly worse for the reference manual set and the
1500 case proof test set then the 403 case training set.
Since these training performance are based on the unbiased
one-out method of Lackenbrach and Mickey (Ref 7) and since they
occur more for the classification of columns then any other
object, we conclude that this is a real effect and not a
difference between performance on training data and real data.
In particular, we believe that this difference is due to the
character of the data sets. The training set was picked as
a clean set"'. Thus, the particles were more clearly defined
in particular there are significantly less marginal cases
between plates and columns and between columns and needles.
There were also less marginal cases between plates and dendrites
and columns and dendrites. However, since the columns were
effected by three of the uncertainties, the effect of cleaning
up the data set can be expected to be greater on columns then
any of the other particles.

To illustrate the types of particles for which the
machine is having the greatest difficulty, the particles
havinq the lowest likelihood ratio are shown in
Figure 9. This figure shows the types of particles which are
difficult for machine classification.

I

36l



o H-

lil

F4 W .

(1H XJa

-4
U

'liw

- '
~~x x

x x

xx

00
rJL4 OD

Ef)I II

U)U
ul 0*a

-1 11
u3

x z U2



-~ ~ ~ X - 55,

ccc

it

um bn

U)s

P-4
m

En

1.4

U) xxx xx'xx

0%

o1lo
UU8.

N3



'44

HD

Hu

(I)

zU)

4

39e



4.0 USE OF COMPUTER PROGRAMS

Two computer programs were prepared to implement the
algorithms developed in this study on the CDC computer at
AFGL. These programs were prepared and debugged on the IBM
computer normally used by the ADAPT Service Corporation
and then delivered at AFGL. AFGL programmers then modified
these programs to run on the AFGL CDC computer. The two
programs prepared were a data preparation program and the
classification program. Source decks and listing have been
delivered to AFGL under separate cover.

4.1 Data Preparation Program

The data preparation program was a relatively minor
modification of the existiig AFGL data preparation program
designated as KN2UTIL. The modifications of this program
consisted of modifying the main and adding a new sub routine,

CLANT to perform the preparation of the vecto-s into the
standard ADAPT "ANT" format suitable for the ADAPT processing.
This program also was used to perform the preliminary pre-
processing which was defined in Section 2.1 of this report.
This approach was taken to minimize the modifications that
will be required to implement this on the AFGL CDC computer.

These modifications resulted in the addition of the
following input variables to the KN2UTIL program: 1) ANT,
2) LTP, 3) LMAX, 4) TMAX, 5) HOLS, 6) IZ, 7) NGAP, 8) MIN,
9) NER, 10) REJH, 11) REJP, 12) REJC, 13) NFIND, 14) NVREG.
These new variables may be input in the same manner as
the other inputs used in KN2UTIL. These variables have the
following meanings;

1) ANT - This is a logical variable preset to true which
when true results in the preparation of a standard ADAPT input
tape containing integer representations of all particles
passing the selection criteria in the standard ADAPT ANT format.
This output tape is referred to as the integer ANT tape.

2) -LTP - Unit upon which the integer ANT tape is written.

V3) LMAX - This variable (preset to 1024) is the maximum

length of diodes which will be accepted before the particle is
rejected.

4) TMAX - (Preset to 85 deg.-F) Maximum temperature
allowed. Particles having greater temperatures then TMAX will
be rejected.
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5) HOLS (preset to 1.0) Starting HOL number or count

for the ADAPT ANT type vectors.

6) IZ - Three dimensional array indicating component

numbers of the ANT vector to be included in the header
documentation (i.e. Zl, Z2) of the ANT vector. This

parameter does not effect the data processing but merely
controls what information is included in the standard ADAPT
documentation format.

7) NGAP (preset to 1) Number of unobstructed diodes
between two regions of the image which will cause rejection
based on more than one particle in the field of view.

8) LMIN (preset to 3) Minimum length of particle which
will be retained.

9) NER ( preset to 10) Number of tape errors which will

be accepted without aborting the run.

10) REJH - Logical variable preset to true. Option to
reject particles entering horizontally.

11) REJP - Logical variable preset to true. Option to

reject all precipitation probe particles.

12) REJC - Logical variable preset to false. Option to
reject all cloud probe particles.

13) NFIND (preset to 999999) Maximum number of acceptable

particles to be found before the run is terminated.

14) NVREJ (preset to 1) The number of vertical columns

of blanks which if appear between two portions of the image
will be sufficient to define the image as consisting of two

separate particles and thus result in the rejection of the image.
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The output of this modified KN2UTIL program includes all
of the outputs of the original AFGL version of the program,
plus a tape containing the integer data histories in the
standard ADAPT ANT format on the unit defined by LTP. There
is also a new output summarizing the results of the pre-
processing. This summary ?rovides
the following information; 1) the number of data histories
found (always less than or equal to NFIND), 2) a definition F
of the documentation variables used and their location, 3) a
summary of the number of histories rejected for each of the
rejection criteria specified for the run.

r
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4.2 Classification Programs

The second program which was prepared to implement the
algorithms developed in this study is program CLDCLASs
This program takes the output tape of the revised KN2UTIL,
prepares the data vectors for application of the algorithms
by converting from the integer representation of the shadow
graphs to a decimal value equal to the normalized log of this
integer and takes the fast Fourier transform to construct
the frequency space portion of the history. It also re-
arranges the history such that it begins with the normalized
log of the integer representing the particle shape followed
by the frequency space representation followed by the
documentation variables which the user specifies. For the
algorithms developed thus far, the documentation variables
used are variables 95 through 99 and represent the magnitude V
of the normalized linear portion of the data vector, the
magnitude of the normalized frequency portion of the data vector,
the Feret length, Feret width and the point of maximum width,
respectively. The program has been prepared with sufficient
flexibility, that other documentation parameters such as the
temperature,velocity, etc could be added to the data vector.
This will of course require the development of a new eigenvector
transformation and new algorithms.

After preparation of the data vector as specified by the
user, this program will then apply the eigenvector transforma-
tion which is included as a data statement in subroutine EIGTR.
It will then apply the algorithms which are included as data
statements in subroutine CLDA41. Thus, the version of this
program to include different algorithms merely requires the use
of a new subroutine CLDA41 and to include a new oigenvector
transformation merely requires a new subroutine EIGTR. It is
anticipated that there may be several different versions of
subroutines EIGTR and there are already three versions of sub-
routine CLDA41 (the preliminaryone step and the two step
algorithms). These subroutine, have inputs defining their version
number. These version numbers must be input to the program
corresponding to the subroutine which is used or the run will
be aborted.

The input variables to this program can be divided into W

three major groups: control variables, FFT definition variables,

and classification control variables. The control variables
are:

1) ITP equal to the input tape unit preset to start with
unit number 10 and continue modulo 1 up to maximum allowed
number.
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2) ICAS (NOTPMX) Number of cases on each input tape
(preset to -1) except for the first input tape which is
preset to MXCAS.

3) RWIND - Option to rewind tape drive after all cases
read (preset to 2).

4) 1Q41 - Option to use IHF, HOLS, or HOLD as input
of HOL number for 1041 equal to -1, 0 or 1, respectively
(preset equal to 0).

5) IHF - Input HOLS to be copied from integer ANT tape
prepared by program KN2UTIL must be input as integers and
the program will continue to count from any input value
until the next array member is found.

6) HOLS - Defines both input HOL if decimal ANT tape
is used and output HOL if decimal ANT tape is prepared unless
HOLD is specified.

7) HOLD - Same as HOLS except that HOLD specifies the
first HOL and the parameter HDEL specifies the increment
to be used to continue from this first HOL to all HOL numbers
input.

8) NTAP (preset to 9) Output integer ANT tape.

9) IVTP (preset to 4) VAL tape with VMAX VMIN of documenta-
tion variables for use in equalizing data tapes.

10) IOPRT equals last output HOL to be printed (preset
equal to 1) Allows one to print all values associated with
a few HOL numbers as diagnostics.

11) NATP equals number of tapes to be processed for
this job (preset to maximum allowed number of tapes).

12) OPCLS equals option to perform classification and
prepare Y tape (preset equal to true), (Y tape is tape of all
cases used represented in eigenvector space).

13) NATP, NYTP - Output ANT and Y tape drives, respectively,
if less than 2 tape not prepared (preset to minus 1).

14) OPIG - Option to transform to eigenspace (i.e. get Y's).

15) OPROT - Option to rotate particle prior to calculating

Y's.
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16) OPITP - Option to prepare integer ANT tape identical
to input histories unless particle is rotated in which case
the integer ANT tape will correspond to the rotated particles.

17) OPA41 - Option to only call subroutines EIGTR and
CLDA41 NCASE times (i.e. this option does not read or write
data tapes but operates only with the Y tapes).

18) NOTMK - Option not to make integer ANT tape (i.e.
will not call subroutine SBITA, if NOTMK equals true (preset
equal to false).

19) NPTS - Defines number of points in output data
history (not required if the next three variables are included).

20) IDOC - Starting point of documentation variables
in data vector,

21) NDOC - Number of documentation variables in data
vector.

22) IVSFT - Starting position of FFT variables in output
data vector (two places must be saved at the end of the FFT
for the square magnitudes associated with the magnitude used
to normalize the spacial components and the magnitude used to
normalize the frequency components).

The input variables which define the FFT are as follows:

1) ISFT and NFT specified the starting point (input index)
and length of vector to be used to construct FFT (must equal
the power of two).

2) ICUT, NCUT - Equal upper and lower cutoff of FFT
(preset equal to 2, 0, respectively; that is, the first two
points of the FFT are dropped to eliminate the DC term and no
high frequency terms are dropped).

3) IVSFT - Specifies start of output of FFT in output
data vector.

Note, that if the FFT parameters are changed from those
specified when the algorithms were delivered new eigenvector
transformations and algorithms will be required.

The following variables control the use of the classi-
fication algorithms. For definition of the values to be used,
the reader is referred to Section 2 of this report in
which the one and two step algorithms and the variations in
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the thresholds are discussed. In the following, we shall
briefly describe the variables which allow you to input
these criteria to the program.

1) VEREIG - This variable determines the version of
the eigenvector transformation to be used, lhis should always
be I"' for the algorithms delivered at this point.

2) VERA41 - This determines the version of the classi-
fication algorithms to be used. This parameter should equal
10 for the preliminary one step algorithm, 12 for the one step
algorithm and 20 for the two step algorithm. Note, that the
corresponding subroutine CLDA41 must be incorporation in the run
or the run will be aborted.

3) NEIG - Number of points in the data vectors used for
deriving the eigenvector transformation must be equal to 99
for the algorithms delivered at the time of this writing.

4) ICLl - (preset to unit 7 equal card punch) Output unit
on which the first and second choice will be punched in the same
order as the input cases. This output will be given in integer
namelist format.

5) ICL2 - Unit on which a tape containing the detection
statistics will be prepared if this value is less than two
no tape will be prepared.

6) LRl - Sets options for printing summary of output:
if "PO only summary is printed, if "2" summary and table of
likelihood ratios is printed and if "3" summary and tables of
likelihood ratios and detection statistics will be printed.

7) PROBi - This is vector having a number of components
equal to the number of algorithms. Each component in this
vector represents the constant in the calculation of the
detection statistic for the corresponding classification
algorithm. Thus, introduction of positive components reduces
the threshold value for the corresponding algorithm. In this
way, the relative strength of the algorithms may be adjusted
as described in Section 2 of this report.

8) PROB2 - Only two components of this input are utilized.
The first component PROB2 (1) defines the criteria on the ratio
of likelihoods to define the miscellaneous or unclassifiable
class. If 0 or negative, any particle for which no likelihood
ratio is greater than I is considered unclassifiable for values
greater than 0, the likelihood ratio of the largest class must
exceed the second largest class by a percentage greater than
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or equal to PROB2 (1) or the particle is considered unclassi-
fiable. The second component PROB2 (2) is only used in the
two step (i.e. version 20) of CLDA41. For two step PROB2
(2) defines the constant in the algorithm for calculating
the detection statistic for the needles or columns verses
plates and dendrites first step in the separation. It may
be used as described for PROBl to adjust the threshold of
this algorithm.

The remaining parameters in namelist LISTCK are used

primarily for diagnostic purposes and are not required as
inputs to run the program.

In addition to the options to printout the likelihood
ratios and the detection statistics, a summary of the classi-
fications is printed out whenever suuroutmne CLDA41 is used.
This summary is prepared for each set of 1041 particles examined
and defines the number of particles identified as dendrites,
needles, columns, plates, streakers, and miscellaneous.
Table 7 presents a typical summary of the classes produced

by CLDA41 for 1041 equal to 300.
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5.0 DISCUSSION OF EIGENVECTOR REPRESENTATION OF

PARTICLE HISTORIES

The eigenvector representation was developed to

represent the 403 training particles that were supplied

for this study. Prior to developing this representation,

the training set was reduced to a set having zero means by

subtracting the average of all 403 particle data vectors fixom

each of the data vectors. Figure 10* shows this average cloud

particle for all the data vectors. These zero mean vectors

were then processed through the ADAPT eigenvector derivation

program and the eigenvectors derived. The variation explained r

by each of the eigendirections is plotted in the lower curve

shown in Figure 11. The ordinant on this curve is the

percent of explained variation and the abcissa is the eigen-

direction. The upper curve plots cumulative sum of the

q lower curve, thus, at eigendirection-2, the lower curve

indicates that approximately 5% of the variation is explained

by the second eigendirection, the upper curve shows that the

first two eigendirections taken together explain slightly

more than 95% of the variation in the data. This curve

shows that the eigenvector representation is extremely

efficient for representing the particle shape and size in-

formation included in these data histories. A more detailed

examination of the information in this curve is shown in the

curve connecting the circled points. This curve uses the

ordinant scale reduced by a factor of 10,000 and reveals

that the eigenvectors take on a noise-like behavior after

approximately the 26th eigendirection. The next major slope

change occurs after the 19th eigendirection. This suggests

that between the 19th and 26th eigendirections the variation

is probably mostly associated with a limited number of cases

(labeled "non-Global" adjustments on Figure 11) and is
probably not a good regioi- in which to develop useful algorithms.

Figure 12 presents plots of the first four eigenvectors,
The abcissa of these plots is the same indexing variable that

* Because of the large number of figures, all of the figures

for Section 3 will be found at the end of the Section.
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appeared on the data vectors presented in Figure 2., That is,
each abcissa index represent one of the directions in the
original data sp-ice. The ordinant is the projection of
the eigenvector on that original coordinate direction. -

Recalling that the particle shape history and its frequency
spectrum are both normalized, the first 94 points include
only shape information. The 95th and 96th points represent
the square magnitudes of the particle shape and its frequency
spectrum, respectively. The 97th and 98th directions are
the Feret length and width, respectively, and the 99th
direction or last point is the point of maximum width of
the particle and, therefore, primarily a shape measurement.
Thus, the plot of the first eigen-vector shows that the greatest
magnitude in this vector is concerned with variables 95
through 98 and, thus, this vector is primarily related to
the size of the particle. The second eigenvector is primarily
determined by the length. The third eigenvector contains
significant. contributions for both the size and shape portions
of the history, however, the size portions to a large extent
cancel one another out and, therefore, the third eigenvector
is primarily concerned with the shape of the particle.
Similarly, the fourth eigendirection is related to the shape.

Figure 13presents the projection of the 403 training
cloud particles onto the first and second eigendirections.
The symbolb used on this plot are shown under the title.
The files ieferred to are the files on the original data
tape and w,:re originally identified as follows: File 1 was
primarily iain, File 2 was primarily large snow, File 3 was
primarily bullet rosets, File 4 was primarily needles and
File 5 was primarily dendrites. Notice, that three particles
which are separated from the main cluster identified by the
symbols, /, B, and 4. These are the only three streakers
which were in the data set. It is clear that these streakers

* are easily separated in this scatter plot of the first two
eigendirections.

Figure 14represents a blow-up of the region in Figure 13
containinc the majority of the data. The symbols on this plot
show that class of the particle as determined by a more careful
second exaz.ination of each of the individual particles which
were used lor this study. The numerals represent "pure cases"
and the letter lcss certain identifications. This figure
shows the region in which the needles represented by A's
and l's are almof;t all located in the lower center of the

* figure whereas the dendrites represented by 2's and B's are
primarily located above an eigendirection 1 value of minus 10

50
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and on the left side of the figure. Both of these classes
are reasonably well separated even in this first scatter
plot which explains 97.8% of the variation.

r

Figure 15 presents the direction of the 403 cloud
particles on the third and fourth eigendirections using
the symbols associated with the original data files.
Figure 9 is a blow-up of the lower left hand corner of
Figure 14 and uses the symbols identifying the final classes r
associated to the training data. These two eigendirections
explain 1.14% of the variation in the data. There are no
good separations on this scatter plot, however, the bullets
or columns appear to be grouped together in a non-linear
region.

Figures 16 through 28 present similar plots of the
eigenvectors and the projections on these eigenvectors using
the symbols to identify the particle according to its final
training classification for eigendirections Number 5 through
20.

!F
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FIGURE 10 ..

AVEAGE OF 403 CLOUD
PARTICLE DATA VECTORS
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FIGURE 11
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PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS I AND 2 (IA=NDL;
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FIGURE 17

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 3 AND 4 - (IA=NDL;

2.B=DNDRT; 3,C=BLT; 4,D=COL; 5=BLT OR COL; 6,F=PLT; 7=PLT OR SPH; 8=MISC; 9=STRKR)
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FIGURE .

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 5 AND 6 -(1,A=NDL;

2.B=DNORT; 3.C=BLT; 4,O=COL; 5=6LT OR COL; 6,F=PLT; 7=PLT OR SPH; 8=MISC; 9=STRKR)
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F IGURE-104

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 7 AND 8 -(1,A=NDL;

2.8BDNDRT; 3,C6BLT; 4,O=COL; 58BLT OR COL; 6.F=PLT; 7=PLT OR SPH; 8=MISC; 9=STRKR)
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FIGURF-20 EIGENVECIORS 9-12
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FIGURE-21

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 9 AND 10 - (IA=NDL;

2,B=DNDRT; 3,C=BLT; 4,D=COL; 5=BLT OR COL; 6,F=PLT: 7=PLT OR SPH; 8-MISC; 9=STRKR)
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FIGURE ?2

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 11 AND 12 -(I.A=NDL;

2.BODNORT; 3.C=BLT; 4.D=COL; 5=BLT OR COL: 6,F=PLT; 7=PLT OR SPH; 8=MISC; 9=STRKR)
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FIGURE-?' EIGENVFCTORS 1.T
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F IGURE-211

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 13 AND 14 -(1,A=NDL;

2,B=DNDRT; 3.C=BLT; 4,D=COL; 56BLT OR COL; 6,F=PLT; 7=PLT OR SPH; 8=MISC; 9=STRKR)
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PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 15 AND 16 -(1.A=NDL:
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FIGURE-2E EIGENVECTORS 17-2n
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FIGURE-27

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 17 AND 18 - (I,A=NDL;

2.B=DNDRT; 3.C=BLT; 4,D:COL; 5=9LT OR COL; 6.F=PLT; 7=PLT OR SPH; 8=MISC; 9=STRKR)
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F IGURF-29

PROJECTION OF 403 CLOUD PARTICLES ONTO EIGENDIRECTIONS 19 AND 20 -(1,A=NDL;
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6.0 ANALYSIS OF RELATIVE IMPORTANCE VECTORS

In the description of the ADAPT approach presented in
Appendix 1 and several of the references, it is pointed out
that after the algorithm is obtained in the eigenvector space
it may be transformed back to the original measurement space.
In the measurement space, we may consider the plot of the
algorithm a relative importance vector since the algorithm
is a dot product. This means that the detection statistic
is obtained by multiplying each component of the relative
importance vector by the corresponding component of the
original data vector. Thus, when the component of the relative
importance vector is small, the corresponding component of
the data vector makes a very small contribution to the detection
statistic and conversely when the component of the relative
importance vector is large, the corresponding component of
the data vectors is very important to the detection statistic.
Figures 29 through 34 present the relative importance vectors
for the detection of: 1) dendrites, 2) needles, 3) columns,
4) plates, 5) streakers and 6) columns and needles. These
are the six algorithms which have been incorporated in the
one step and two step procedures which have been delivered
as part of this contract.

The above description of how these relative importance
vectors are used implies that if one wishes to compare two
regions of the relative importance vector, that region which
has the greatest area under the absolute value of the curve
is the more important. Keeping this in mind, we note that in
general, both the spacial components (i.e. components 0 through
64) and the frequency components (65 through 94) make approxi-
mately equal contributions to the decision and the size
parameters a relatively small contribution. The one major
exception to this is the streaker algorithm where the frequency
and spacial components makes considerably smaller contributions
relative to the size parameters. This is probably in part due
to the fact that this algorithm was derived by manual examina-
tion of the projection of the three streakers which were
available for the training on only the first two eigendirections.
It suggests that significant improvements in the streaker
algorithm would be possible if a relatively large number of
streakers were processed through the Fisher classifier and a
higher dimensional analysis performed to derive this algorithm.
However, as pointed out in the introduction, the classification
of streakers was not considered a major problem area and, therefore,
little emphasis was placed on the development of this algorithm.
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FIGURHE -29 RELPITIVE IMPORIPINLE
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FIGURE -30 RELATIVE
IMPORTANCE VECTOR FOR DETECTION OF NEEDLES
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F IGURE -31 RELATIVE
!MPORI1ANCE VECTOR FOR DETECTION OF COLUMNS
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FIGURE -Z2 RELATIVE
IMPORTANCE VECTOR FOR DETECTION OF PLATES
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FIGURE -33 RELRTiVE IMPORT NCE
VECTOR FOR DETECTION OF STRERKERS
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FIGURE -Eli RELATIVE IMPORTANCE
VECTOR FOR DETECTION OF COLUMNS AND NEEDLES
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In general, one observes the expected behavior in
both the spacial and frequency components. That is, all
of the objects tend to provide a similar return very near
the beginning and then as one expects, the larger objects
provide more return near the rear portion. The longest
objects in the training data set were very large columns
and plates which appeared in some of the data. For this
reason, we find positive values of the relative importance
vectors after approximately 20 diodes for both the columns
and plates and negative values for the dendrites and needles
which tended to be shorter than 20 diodes for most of the
training data. When one examines the frequency space, one
notes that long constant objects tend to have a higher
frequency return then highly variable objects. This corres-
ponds to the well known principal that if the time domain
has a very smooth function extending over all of the space,
one will have almost all of the frequencies represented in
the frequency space and conversely a highly oscillating time
function will tend to have a relatively smooth representation
in the frequency space. It is interesting to notice that
the columns and needles tend to cancel each others peaks
and valleys such that the detector to detect the combination
of columns and needles results in a very broadband signal
in the frequency space. This is probably the explanation
as to why this two step algorithm shows advantages over the
single step of finding the columns and needles independently.
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7. 0 CONCLUSIONS

Two schema for the machine classification of cloud.
particles as measured by Knollenberg 2D probes have been
developed and analyzed. These schema are based on detection
and classification algorithms derived from real data and
have incorporated into them the flexibility to allow the
user to modify critical thresholds associated with these
algorithms so that they may be adjusted to the needs of
the user as well as to differences between characteristics
of data sets. Examples have been given which show how
the confusion matrices associated with a given training
subset of a data set can be used to select and verify these
adjustments to the constants.

The nominal performance of these schema using the
nominal settings for the thresholds has been found to be
superior to the performance that would be expected from manual
classification. Thus, even without these adjustments these
schema should provide performances superior to manual classi-
fications. Since manual classifications is an extremely time
consuming job and there is a tremendous number of particles
in a typical data set, the advantages of these schema over
manual classification are clearly significant even without
the adjustment of the schema to a particular data set.

The techniques differ from those previously developed
primarily by the use of real data for training data. Analysis
presented show that even the variation between real sets of
data can be expected to have significant effects on the proper
design of the classification schema. Thus, it is very unlikely
that the use of artificial data will yield algorithms which
are useful for automated classification of these Knollenberg 2-
dimensional cloud particles.

The classification schema developed here make use of the
relatively simple to apply Fisher classification scheme rather
than the more complicated maximum likelihood and Bayes family
o classifiers. Considering the problems associated with
the definition of good training sets and consistency of data
between data sets, it is believed that the difference between
the Fisher classifier which is an approximation to the maximum
likelihood are small compared to the other problems associated
with the development of these classifiers. Thus, the significant
savings in computation both in the development of the classifiers P

and especially in the application of the classifiers justifies
the use of these computationally more efficient algorithms.
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The algorithms efficiency is further increased by the
use of the unique capabilities of the ADAPT family of
classifier development programs to objectively define and
extract features from large data sets. Analysis of both
rotated and unrotated data has demonstrated that the features
used are relatively insensitive to particle orientation.

Initial attempts to reach agreement on the truth data
suggested that the particles to be classified could be
considered "poorly defined" objects. These objects
were poorly defined in the sense that there will be dis-
agreement as to proper classification for significant per-
centage of the members of the classes among different human
classifiers. To understand the impact of this poorly defined
nature of the objects, comparisons were made between 15
different human classifications of the same set. It was found
that technician and computer specialists were, in general,
more consistent with the trainer's classifications then
experienced meteorologists. The particles causing the greatest
difficulty for rnmchine classification were also found to be
different fron the particles which caused the greatest difficul-
ties for manual classification.

Analysis of the eigenvector expansion suggested that
useful information may be found in any of the first 20 eigen-
vectors. The first eigenvector was primarily related to the
size of the particle, the second eigenvector was primarily
determined by the length, the third through 20th eigenvectors
all showed significant contributions from both the spacial
and frequency portions of the spectra. Analysis of the relative
importance vectors shows that except for the streakers, both
the spacial domain and the frequency domain were important
to the classification. The one universal characteristic of
all of these algorithms was the symmetry of the frequency
plane relative importance vector about the mid point. The
aominant teatures of the time and frequency domain could both
be explained in terms of the shape of the particle. The
streaker classification was based primarily on the global
magnitude and shape parameters with less contribution from
either time domain or the frequency domain of the signature.
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This attachment will present the detail information
which defines the ADAPT appro" ch to empirical data analysis.
This approach is based on the concept that empirical data
analysis should be preceded by transforming the data from
the original data space to a more efficient analysis space.
This more efficient analysis space is defined as that space
which requires the least number of numbers to represent a
given amount of information in the original data set. It
can be shown that this space is simply the eigenvector space
and the transformation required is the eigenvector or the
Karhunen-Loeve transformation.

The personnel who are now the senior technical staff of
the ADAPT Service Corporatic.i each have a decades experience
with analysis in the eigenvector space. This has led to the
development of aunique set of computer programs both to perform
the transformation to the eigenvector space and to perform the
analysis in this spa'-e.

The ADAPT programs have many outputs which are considerably
different from those which are obtained from classicai approaches
to empirical or statistical analysis. This attachment will
attempt to present a brief description of these outputs and how
they may be used to improve empirical data analysis. In the
following paragraphs, we will summarize each of the capabilities
and outputs of the ADAPT analysis procedure.

ADAPT OPTIMAL REPiESENTATION

The major difference between the ADAPT approach to empirical
analysis and the classical approach to empirical analysis is the
derivation and use of the ADAPT optimal representation to simplify
and improve all subsequent empirical analysis of the data. The
ADAPT optimal representation is known in the literature underI the names of: 1) principal componenL analysis, 2) Karhunen-Loeve
expansion, 3) eigenfunction expansion and 4) optimum empirical
orthogonal functions. The ADAPT Service Corporation has developed
a unique approach to obtaining this transformation which overcomes
the difficulties associated with the iterative techniques discuss ed
in the literature and available in most "statistical'packages".
The importance of this unique approach to deriving eigenvectors
is discussed in the ADAPT write-up titled "significance of ADAPT
Anproach to Deriving Eiyenvectors" included as Appendix 2B.

It is useful to review some of the basic concepts
associated with thc ADAPT optinia. repr)resc.!ntation. The
first poinL which must be establish(.d i s the ineaning of
optimal. For the ADAPT application, optimal is defined
as that representation which requires the least ,jumber of
numbers to repi:csent a given amount oCF infonnmition or varia-
tion. Thus; by definition, the ADAPT optimzal representaLion
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is the most efficient orthogonal coordinate system for
representing the learning data. For further discussion of

this transformation and its use see References 1-3.

After the optimal representation has been obtained,
the learning data is transformed to the optimal space
and the analysis is performed in the optimal space. The
optimal space may le viewed either geometrically as a
new coordinate system for describing the learning data of
functionally as a system of empirical orthogonal functions
(EDF) to be used to construct a generalized Fourier series

representation of the learring data. In the first case,

tl- analysis is performed on the coefficients of each
of the data vectors in the new space. In the latter case,
the analysis is performed on the coefficients of the
generalized Fourier series expansion of each of the
data hisLories. The numerical value of the coefficients
is ideintical regardl(.s of whether the procedure is
visualized geometrically or functionally. Thus, the
major output of the first step of any ADAPT analysis is
the transformation matrix to transform the data from the
original data space in which the data vectors are defined
to the new optimal ADAPT analysis space.

To visualize the role of the ALAPT representation,

consider the trai )rmaLion matrix Hn between the original
data space contai ig observation or data vectors OSVkn"
and the optimal w,,!lysis space containing the transformed
data vectors "Ykr"- Figure 1 presents a block diagram of
the ADAPT process illustrating this role of the optimal Epace.
The transfoymation matrix, Hn, is an orthogonal matrix, the
inrnr:rse of this transformation is equal to its transpose.
Thus, one has rules for transforming the data to the optimal
space and the results of the analysis from the optimal space
back to the original space. The dime nsionality of the original
space which using the notation ')i Figure 1 is K by n will be
reduced to K by r where K is the number of cases and n is the
number of dimensions or number of numbers required to describe
each case. In general, for large data sets, r is at least an
order of magnitude less than n. For data vectors less than
the order of one hundred, r may only be a factor of 2 to 10
less than n. The data in the original data space is designated
by the symbol Vln. In the optimal space, his data is represented
by the coefficients Ykr. Where K in both cases designates the
case and n and r designate the components of the data vector
in each of the spaces, respectively. One may transform the
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data either from the original. data space to the optimal

space or visa versa by using the transformation matrix

as indicated by the arrows on Figure 1. Linear algorithms

may also be transformed between the data space and the

optimal space by use of the H matrix.

The ADAPT characteristics which in addition to the classi-

cal statistical summary parameters would be of interest include

the ADAPT optimum function, the information energy plot, the

ADAPT scatter plot, the ADAPT relative importance vector,

performance map, independent eigenscreening and the empirical

validity criteria. The following paragraphs will present

a brief description of each of these and some of the ADAPT

preprocessing concepts.

Otimum Function

Referring to the preceding descrption of the ADAPT
process, the ADAPT optimum function is numerically the

corzesponding column of the H matrix. Since this vector
is described by N components, it has the appearance of a
data vector that shows the importance of each of the
original components of the data vectors to the construction
of the optimal space. Plots of this function provide a
physical interpretation for the components of the optimal
space and also an indication of which of the original data

vector components are conveying similar information. T',is
may be viewed as an analysis of variation of the data

but it should not be confused with the classical analysis
of variation which i s normally assoc*iated with the outputs
of regression analysis. These classical analyses of
variation generally describe how much of the variation
observed in the dependent variable can be explained by
the independent variable. The ADAPT optimal functions on

* the other hand, are simply an analysis of variation of the

independent variable without considering the dependent
variable at all. It seeks to answer the question which

7 independent variables express the greatest amount of
variation and which independent variables convey similar

* information.

Information Energy Plot

The eigenvalues associated with each of the optimal
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0 functions defines the amount of variation in the
learning data set which is explained by that optimal
function. Since all information must be conveyed by

variation in the data, this variation is analogous
to an "information energy". One of the standard ADAPT
outputs which will be provided 'for each of the bases

developed (i.e. transformation matrices) in this study

is a plot of this information energy or eigenvalue

as a function of a number of dimensions used. [X\amina-

tion of this information energy curve allows one to

determine the dimensionality at which the information
has the character of noise. One can also observe the

change of character of the information represented as

a function of dimcnsionality. It is often pos.ible to
detect the point at which the eigenvectors are primarily

correcting for anomolous cases! Thus, the information

energy is one of several important tools in selecting

the dimensionality for the analysis. Some of the subtle

aspects associated with analysis of the information
energy are discussed in references 4-6. Ref-4 is a funda-

mental paper, the results are often misused. Ref-6 discusses

this in more detail.

Scatter Plot

The ADAPT scatter plo: is the projection of the

data vectors under consideratio. on two dimensions of

the optimum space. In general, one projects on the

first two d:ituensions on the optimal spnace since these

two dimensions provide the best representation of the

information con',3ined in the data. This is identical

to making a scatter plot of the Ylk versus Y2k coeffic-
ients. Note, that equation 2 on Figure 1 can be intei-

*preted as the generalized Fourier series expan-,ion of

dota history SVk in terms of the orthogonal functions

defined by the H matrix. Thus, a data history, SVpn

having a first coefficient of 1, (YI = 1), on the

scatter plot and a second coefficient of -1, (Y2 p = -1),

would have a two term generalized Fourier series

representation equal to the difference between the first.

and second optimal functions (SVp -I11 - H 2  ... ). The

significant achievement of the scatter plot of the first

two optimal coefficients of each of the data vectors

is that it present i the best possible two dimensional

representation of the entire data set. Each point on

the scatter plot represents an entire history made up of
N points.
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Algorithm and Relative Importance Vectors

The derivation of a linear classification algorithm
may be looked upon as the search for the line or vector
with the property that the numerical value of a data
vector's projection on this line is a good detection
statistic. The ADAPT algorithm vector is a plot of
the component:; of the projection oi this vector in
the original data space. Since .he dot product of this
vector ,,it, the Oata vector determines the detection
stat istic, t mdqnitudc of each of these components
provides a rau, tre of the importance of each component
to the alycit w-im bei1ng evaluaLed. In the ADAPT
programs, the algorithm vector is derived in the optimal
space. Thus in data space this vector is the product of
the vector (]efi ied in the optimal space, Ar tines the

ra, orw t..i n,,10 I cix 1II1-.

The jniwrLnce of any varj, ;le to an ii1gorithm is
the product ,f two values: 1) the valuce of the algorithm
asseciait,(1 W..Lth that value and 2) th ijin!mLjj oL0 variation

associatcd wi Lb the variable. For example, a given
vdri, , ble maL. .; no contribution to an al(Jorithnm if the
alg ',-i ,. .7 is uero or if it has t.Lc: sar value .

all os-.rvat ions. Thus, we define the relative importance
vector a,, z, V., or in dat:a spik "c where i- ,ach compinent

is e roOU, of 0- , 0 2 o'-iLi, value and the variance
of ; l k.- V 1: ; zsoc:"  d w±t*h 2. at .o m ert. 'It
folic ws li-Lo, ' mech.nism oif 'The dot: lrc uCc operation
th L i. i:.tie aUsol val.tio of the relative importance
(or algorit]hi) vuctor which i; .sigiiLficarit. For cxampie,
con.;idcering t),e algorithni vector, if one variable has a
valic of ml v. ; .5 and aiiother variable a value of plus 0.1
a cha1(JC i)n LhUL ind '.:iny vari,;ble havjinz Lhe valu,- of ;ninu;
0.5 in the ;i go vithim vector hn; five times; the cffect on
the answer .i detectijon statiFltic as the same channge in
the indexing varial~e having a value of plus 0.1.

SPerformance M-p

The performance map is a plot of the dimensioliality
used for the ani] ysis versus the perforriance of the algorithm
deve]loped, it provides an empirical non--plirametric tool
to dctermine whether there was sufficient learning cases
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to provide a physically meaningful algorithm. It also
provides a too]. for estimating the gains possible by
increasing the amount of training dz'ta. The task accomplished
is analogous to the problem of fitting a third order polynoraial
to independent test data. One cian always fit a third order
polynominal to three numbers, and there is no implied physical
significance to the fact that there is a good fit. This is
often referred to as an overdetermined problem. On the other
hand, if one has a "large" number of independent samples say
one hundred samples and one fits a curve to this larger set
of samples, one may conclude that those hundred samples can
be approximated by a third order polynomial expression over
the range of the available experimental data.

q The question is, what is "large"? The same phenomena r

occurs for all empirical analysis. If the number of
learning cases equals the nuj-.er of dimensioi.., most
empirical algorithms will fit the learning data cxactly,
howcver, once again there is no physics implied in this
fit. As one increases the number of learning cases beyond r
this point, if one continues to achieve good fits of the
data with the empirical algorithm, the probability that the
fit is L-zed on Physics increases. Eventually when the
ratio of learning cases to number of dimensions used is
"sufficiently large", one not only can assume that the
relationship is based on physics but that the performance
which is obtained on the learning data may safcly be
extrapolated to future independent test samples. Thu
ADAPT performance map can be used to define "sufficient large".

After introduction of 'he independent eiqcnscreening
concept into the ADAPT linear classification and regres ton
programs, the performance map was no longer required
to determine if the overdetermined situation
had been obtained. However, the performance maps are now
easier to use and still determine if additional trainingi
data should be used. They now provide plots of both tht'

biased and unbiased performance as a function of ratio
of number cases to diliensiontlity. W.Then both lhe Li:,

and unbiased performances are similar,. the numbCr of

training cases are adequate for that ajgoril]iv.

Empirical Valid-t',' Criteri-

The ADAPT app)roac of ,rc'cing . .

with an opt.iz.1 represental 1P,, alr ",;o
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for performing a necessary but not sufficient test to
determine whether an empiricJ.l algorithm is applicable
to a new independent test sample. This empirical validity
criteria consists of obtaining the ratio, (0) of the length of
the data vector for the new independent test case in* the
optimal space to its length in the original data space.
If this ratio is significantly less than the corresponding
ratio for the average or typical learning data used to
derive the algorithms, the independent test case has been
obtained from a sample which is significantly different
from the learning data. Thus, empirical analysis of the
test case based on algorithms derived from that learning
set can not be justified. Experience with this validity
criteria in many different problems, has shown it to be
very effective in providing apr; .,.i estimate of whether
an algor.thm is applicable to i- rticular test case.
This procedure has been part ojf e ADAPT family of computer
programs and was first describe,; Jn the literature in Ref-7.

Gx up-Out Independent Testinq

The ADAPT regression and classification algorithm
development programs include a capability to obtain

independent (i.e. unbiased) test results with a minimun
increase in the required number of cases. This is
achieved through the group-out testing procedure. The
procedure is to consider the original training set of
data as made up of a relatively large number of small
groups of cases. Note, that the group may be as small
as one case. If we have a set of M cases available
for the study and we use groups of N cases each, the
procedure is to remove the first group of N cases giving
a training set of M minus N cases and an independent teE:
set of N cases. The algorithms are derived on the
training set and tested against the N cases in tbe first
group. When this is completed, the N cases in the first
group are returned to the training set and a second
group of N cases is removed and the procedure repeated.
If this procedure is followed, one finds that they have
derived a total of M divided by N algorithms each having
M minus N training cases and has tested the total of all
of these algorithms against M independent test cases.
Thus, the net effect of this procedure is to effectively
provide M miiius N training cases and M independent test
cases from a set of M cases.
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It should be noted, that the procedure originally reported

in the literature in Ref-8 is based on the capability to obtain
an inverse with one case omitted from the covriance matrix. In
the ADAPT programs, our ability to use this procedure is
due to the efficiency of the analysis in the ADAPT space.
Although we also have some programs which make use of
the procedure outlined in the literature combined with
the efficiency of the ADAPT analysis space which provides
an extremely economical way of performing one-out testing.

We have compared the performance obtained with the group-
out testing with classical independentt testing and have
found with random selection of groups, stable sets of
algorithms produce identicl results as independent tests
when training and test samples are drawn from homogeneous
data. With conservative selection of groups the group-out
testing is a more severe test.

Eigenscreening

Classical screening regression has been avoided in
the development of the ADAPT computei programs for two
reasons. These reasons are: 1) classical screening

regression makes the screening decision based on the
performance established from traJ.ning data. Comparative
analyses between use of independent test data and
training data performed by the ADAPT Service Corporation
have shown that the trainir data does not provide a
reasonable basis for screening o? the variables and 2)
classical screening is performed on a set of independent
variables which are not orthogonal. and thus considerable
effort is required ascertain wheiher a variable is
retained because it is significant or because it is
repeating information which has already been obtained in
a different variable.

The ADAPT eigenscreening approach is similar to the
classical screening regression except that the screening
is performed in eigenvector space and performance is
established based on the group-out testing procedure
and thus is based on independent and unbiased test results.
Since the screening is performed in the eigenvector space
instead of the data space, the variables being screened
are orthogonal and onr need not be concerned with the
linear dependence between the screened variables.
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The screening process is significantly improved
because: 1) thc unbiased tust provides a higher confidence
performance estimate than dosendent ',esting and 2) the
group-out testing allows the evaluation of the stability
of each term in the algorithm ds well as the algorithm
performance. The evaluation of the stability is especially
important when the number of cases is limited, since the
"overdetermined" solution, which must be avoided, is very
unstable. If the performance of the different algorithms
developed in the group-out testing is unstable, one can be
certain that there are insufficient training cases, If
any term in the algorithm is unstable, this term probably
should have beeh rejected.

These improvements in the screening have resulted in
significant additional capabilities in performing regression
analysis. The ADAPT Service Corporation has also applied
tiese protedures to pattern recognition techniques and has
computer programs which provide these same advantages to
the development of classification algorithms. Furtlar dis-
cussion and examples illustrating th. ADAPT cigenscreening are
given in the ADAPT write-up "Illustration of ADAPT Independent
Eigenscreening Technique", included as Appendix C3D.

Pr(procrssin•

~ An extremely impcrtant factor in obtaining good
empirical results is to preprocess the data such that the
information is presented in a useful manner. The ADAPT
family of computer programs include the capability to provide
most of the classical preprocessing, such as normalizations,
adjusting the data according to some prescribed function,
taking Fourier or cepstrum transfornuz, of the data. "MTe
ADAPT computer programs also include specialized preprocess-
ing which has been developed based on requirements
established as a result of the work performed in the past.
These include such techniques as equalization, thresholding
and a unique capability for objectively deriving folding
procedures to overcome non-linearities and non-monotonic
relations between the predictant and the predictor variable.

The last preprocessing performed before processing the
data through the ADAPT eicgenvector deri vation programs
or transforming the data to the eigenspace is to reduce
the data to zero mean by subtracting the average of all
the trainJnq cases from ucach data vector. The zero mean
data offers a great many numerical advantages and is used
in almost all ADAPT studies.
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In all studies where different types of variables
(eg. a data vector composed of tempetature measurements
and pressure measurements) and many cnscs where the
variables are the same but their magnitudes may mask
the variation, the reduction to zero mean is preceded
by "equalization" of the data vector. This is a process
by which the value of each variable is forced to lie ],etweecn
1.0 and 2.0. This is accomplished jy transforming the
original v.riable V],(x) to a new variable Vk(x) using:

Vy(x) - VMIN(x)

Vk(x)= 1 + VMAX(x) - VMIN(x) (1)

where Vk(x) Value of observation k associated with index :

X = A range of one or more indexing variable.-

VMAX = Max value ovc: all training data associated
with index x

VMIN M Min value over all training data associated

with index x
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APPENDIX3 - SIGNIFICANCE OF ADAPT APPR)ACIi TO I'iERIVING EIGENVECTORS

INTRODUCTION

The ADAPT approach to empirical data analysis is than-
empirical data analysis such as pattern recognition or regression
should be preceded by transforming all of the data into the
appropriate e..genvector space for analysis. This provides an

.*: optimum (in the Karhunen-Loeve sense) space in which to perform

.. the analysis and significantly decreases the cost and increases
what can be learned from any subsequent analysis. This approach

. translates most of the major numerical analysis problems into
the first step (i.e. finding the eigenvecto.:s of the covaziance
matrix derived from the original data vectors). Thus, the
efficient and correct derivation of the eigenvectors associated
with a covariance matrix is one of the most important aspects
of the ADAPT approach to empirical analysis.

The ADAPT Service Corporation uses a unique approach to
" the derivation of these eigenvectors which provides both a

greater efficiency with respect to computer running time and
core size and also eliminates the problems resulting from noisy
and/or ill-conditioned real data sets. These noise and data
conditioning problems are very similar to the problems which
lead to singular matrices when analyzing data in the original
data space. Although these problems do not cause a failure
to obtain an answer with conventional. eigenvector techniques
such as those included in the IBM scientific sub-routine
package they often lead to meaningless outputs from these
techniques and unnecessarily large requirements for core size
and running time. This appendix will review these difficulties

*. and outline the advantages of circumventing these difficulties
prior to entering the procedures for deriving eigenvalues and
eigenvectors. ,-

PITFALLS OF CONVENTIONAL EIGENVECTOR DERIVATIONS

Since we are dealing with the task of finding the eigenvectors
of the covariance matrix, we may limit the discussion to real
symmetric matrices. Modern techniques (i.e. the Jacobi technique P1

which is used in the IBM scientific sub-routine package or the
Givens-House-holder technique described in Reference 1 and used
in many commercially available statistical packages are based
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on iterative techniques which usually proceed from some
initial guess for the eigenvalues and an apriori specified
accuracy. With the judicial use of overflow and underflow
protections in the programming of these techniques, one
obtains a set of numbers and vectors which look like eigen-
values and eigenvectors. In many ways, this is unfortunate
because unlike the situation with matrix inversion where
ill-conditioned input data leads to the impossibility of
obtaining an answer, ill-conditioned data leads to a partially
incorrect answer with these eigenvector techniques. These
incorrect outputs are responsible for many of the miscon-
ceptions concerning eigenvector analysis that are often
heard and occasionally even appear in the literature regarding
the use of eigenvectors as an analysis tool. The most common
of these misconceptions are:

1) the instability of eigenvectors (i.e. cases where
eigenvectors corresponding to relatively large eigenvalues
are supposedly unstable as one changes the data slightly),

2) the statement thot the derivation of eigenvectors
for large real data vectors is nearly computionally impossible
(zb: Reference 2, Page 31) and,

3) only the first few dominant eigenvectors can have
physical meaning (the ADAPT Service Corporation has found
and verified physically meaningful information in eigenvectors
explaining considerably less than 1% of the variation).

In the following paragraphs, we will discuss two problems
which may lead to such false conclusions, these are:

1) insufficient independent observations and,

2) noise.

The inpact of insufficient observations can be seen most
clearly by considering a simple case. Suppose for example
one had three observations (i.e. cases) of some phenomena
where each observation consisted of five independent measure-
ments associated with the phenomena being observed. This will
provide a data matrix consisting of three vectors of five
components each. Clearly, if one attempted to run a five
dimensional regression or a discriminate analysis requiring
the inversion of the covariance matrix in this five dimensional
original data space, they would not be surprised to find that

9 the matrix to be inverted is singular. Similarly, one should
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n~ot expect to be able to find five eigenvectors associated
wit tisdata set. Table 1 shows an example using the

Givens-Householder technique where the substitution of the
covariance matrix associated with these three five component
data vectors into conventional eigenvector routines will
lead to Liv ei genva lues and fiv associated eigenvectors.

* The two smallest eigenvalues and their associated eigen-
vectors must be meaningless and should be discarded.

Io

TABLE 1 - SAMPLE VECTORS AND EIGENVECTORS DERIVED USING
GIVENS-HOUSEHOLDER TECHNIQUE

3 - INPUT VECTORS

V1m -10. 0. 0. 0. 0.2

V2~ 0. 1. 0. 0. 0.

V3~ "O., -1. 0. 0. -0.2Io
5 -EIGENVECTORS AND CORRESPONDING EIGENVALUES:

B IGEN VECTORS EIGENVALUE

El =0.9985 -0.0503 -0.0200 -4.3E-12 0.0 200.

E2 =0.0503 -0.9987 5.AE-8 -2.2E-17 -5.7E-17 1.5

E3 =-2.BE-20 -7.OE-17 2.2E-10 -1.0 -1.0 6.OE-18

E4 : 0. 0. 0. 0. l.OE-11 2.8E-16

E5 -0.0200 -0.0010 -0.9998 -2.2E-10 1.4E-15 0.0



If we now introduce two additional cases which are
linearly dependent on the original three cases, there will be
no charge in the above described situation except that in
general the eigenvalues and the eigenvectors will change.
However, if these two linearly dependent eigenvectors are
noisy they mxy introduce additional positive eigenvalues,
making the uses believe that there are more than three
meaningful eigenvectors, even though a maximum of three
eigenvectors can have any meaning. We would hope that these
eigenvectors were those associated with the largest eigenvalues,
however, this can not be assured. If each of the data vectors
were similar such that the first eigenvector explained almost
all of the variation and the second and third eigenvectors
only explained a small amount of the variation, the eigenvalues
of the noise generated eigenvectors may exceed the eigenvalues
of the true eigenvectors. Thus, the ill-conditioned data which
leads to most problems appearing as singular matrices in data
space analysis when combined with noisy data will lead to
the generation of false eigenvectors when one attempts to
derive eigenvectors with most modern iterative techniques.
Thus, the data conditioning necessary to insre successful
results in the data space analysis is equally important to
deriving the eigenvectors.

When dealing with real data especially with real data
defined by a large number of observations especially where the
number of cases is only slightly greater than the number of
measurements defining each of the observations, linear depend-
ence of cases within this data and noise may create these
problems even where one would not expect them. Noisy data
further aggravates the problem by decreasing the number of
independent observations. Large sets of real data where
each data vector is itself a high dimensional vector are
particularly susceptable to a noise induced linear dependence.
That is, although a given observation may in principal be
independent of all other observations it may be sufficiently
similar that the difference between it and another observation
is within the noise or the inaccuracies of the measurements.
When this occurs, it can dramatically decrease the number of
independent cases available and it is often difficult to
determine this effect apriori by examination of the data or
even the physics of the process. Since this noise induced linear
dependence will also reduce the total number of eigenvectors
which can be expected from the covariance matrix, it's effect
can appear in exactly the same way as the simple example given
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above. Thus, we see that in dealing with real data, the use
of poorly conditioned data in conventional eigenvector
derivation procedures can lead to a large percentage of the
eigenvectors being generated from measurement inaccuracies
or other noise and having no real relationship to the data.
Furthermore, this has been accomplished with a great deal
of unnecessary effort on the part of the computer. This
unnecessary effort has increased both the core size and
running time required.

ADAPT EIGENVECTOR TECHNIQUE

The ADAPT technique to circumventing the conventional
problems in deriving eigenvector representations is to
precondition the data matrix by a proprietary procedure which
eliminates the above described problems and is mathematically
equivalent to orthogonalizing the matrix without optimizing.
This preconditioned data is then used to derive the Karhunen-
Loeve expansion appropriate to the original data.
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APPENDIX- C

ILLUSTRATION OF ADAPT INDEPENDENT EIGENSCREENING TECHNIQUE

Tables 1 through 3 present typical outputs from the
ADAPT independent eigenscreening programs. These tables
illustrate the development of a regression algorithm using
independent eigenscreening for estimating the change in
longitude of a tropical storm 24 hours after its observation.
Before using these tables to illustrate the independent
eigenscreening technique, we will describe the information
presented on the tables. The tables consist of ten columns,
each of these columns defines one parameter of interest.

To understand the information presented, we must recall
that the procedure used is to divide the training cases int,
two groups, the first group to be used as training and the
second group as independent test. For example, consider a
set of 60 training cases, we might take the first 50 as the
training and the last 10 as independent test. The algorit-
would then be derived using the first 50 cases and tested

against the last 10. When this is completed, a different s(
of 50 training cases and 10 independent would be used. For
example, we might now take Cases 1 through 40 and 51 through 60
as training data and test the results against Cases 41 through
50. After completion of the second set of algorithms and
independent tests, we could repeat the procedure four more
times. This would yield six different training algorithms
and sets of 10- independent tests on each of the six algorithms
for a total of 60 independent test cases. Thus, beginning

with a total set of 60 cases this procedure would result in
50 cases for training and 60 independent test cases.

The selection of six sets of algorithms and the composition
of each set are input parameters and are selected based on

the physics of the problem. The penalty is that we need to develop
six sets of algorithms. Using conventional techniques the
cost of this procedure would be prohibitive for most real
problems, but with the ADAPT procedures we can take this
approach. As a result of this approach, we have a performance
for the independent. test cases, in this case, the correlation
coefficient given in the third column of the tables and labeled
RHOZVT. We also have a learning correlation cocfficient for
each of the six algorithms developed. The average of these
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coefficients is given in the fourth column of the table and
labeled IOVL. We may also compute the standard deviation
of this learning correlation coefficient and if the algorithm
is stable we would expect that the standard deviation of the
learning correlation coefficients would be small compared
to the avuracye learning correlation coefficient. Thus,
we define the ratio of the standard deviation to the average
correlation coef&.ient of the learning data as the learning
stability. This is provided in the tenth or last column of
the table under the title, "Learn Stab".

Since we have developed six algorithms and each algorithm
has a nuiber of terms in it equal to the dimensionality of
the analysis given by Column 2 in the tables, we can also
examine the stability of each term in the algorithm in the
same way as we examnine the stability of the performance.
This stability is given in the tenth column of the table under
the title of MAXSIG/MLAN. The value given is the value of
the worst 'stability of any term in the aligorithm, the number,
NO, is given for some outputs and is the term in the algorithm
which has this worst stability. When the stability exceeds
an input threshold parameter, the entiie bLdbility for the
algorithm is printed out (on a separate page from this summary
table) so that the user may examine it. Our experience has
shown that the learning stability is an almost certain test
of having obtained theioVerdetermined solution. Experience
with a number of different types of data and pro')lems suggests
that the stability parameter, MAXSIG/MEAN must be less than 0.5
to 0.7 for the last (ie. ton) term.

The fifth column in the tables labeled, ACT-EST, gives
the average error based on the independent testing. The
three columns labeled, SDZV, SIGRATL, or SIGRZVDT, list the
standard deviations and ratios of standard deviations which
we have found useful in assisting in the understanding of the
performance of the algorithms which have been developed.

The first column of Table I showing the potentially useful
eigendirections provides a definition of which eigendirections
are being used in any algorithms developed. In order to
provide brevity in the table, only the last eigcndirection
added is listed. Thus, the bottom xow of the first column
of this table has a value: "3" , this indicates that the
first eigendirection which was useful was the eigen-
direction and that the algorithms developed to determine this
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were developed in the one dimensional space (i.e. Column 2
headcd NR has a value of NR = 1) consisting of the third
eigendirection. The second row up shows that Column 1
contains the value "4". This indicates that the fourth
eigendirection was the second useful eigendirection and the
algorithm to

determine this was derived in the two dimensional eigenvector
space consisting of the third and fourth eigenvectors. Thus,
if one were to read at the ninth row up from the bottom this
is an algorithm developed in a 9 dimensional space consisting
of all of the eigendirections shown in the first column from
the ninth row down to the first row.

Now that we have looked at the format of Tables 1
through 3, we shall discuss their meaning. Table 1 summarizes
all of the. eigendirections which have been selected for
retention based on the input parameters given by the user.
That is, the user is allowed to input a criteria for both the
independcnt test results and the stability which must be
F;atisfied in order to retain a given eigendirection as a
r.ult of this screening. Table 2 shows the same results for
tl2:,ne eigendirections which have been rejected based upon
these criteria. In general, it is our practice on the first
screening run to put in very weak constraints on the retention
of eigendirections so thaft we retain any eigendirection which
has any possibility of being useful in.the analysis in this
first pass. For this study, this yielded a total of 9 eigen-
directions which appeared to have some usefulness for the
task at hand. We then repeat the screening procedure in
reverse. That is, we start with all of the potentially useful
eigendirections and sequentially delete one of the eigen-
directions and determine whether its deletion has improved
or decreased the performance of the algorithm. It sometimes
requires several passes. Table 3 presents the results of the
last pass of this analysis. This table has the same format
as Tables 1 and 2. In general, the criteria utilized are
somewhat more stringent in these final steps. Examination
of this table immediately shows the most successful algorithm,
is the six dimensional algorithm using eigendirections 3,5,
7, 14, 8 and 9. Note, that at dimensionalities
greater than or equal to six both the error and the stability

C-3
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of the termsin the algorithm (MAX SIG/MBAN) deteriorate.
[*/ This table then compictes the screening process.

In summary, because of the efficiency of the ADAPT
process, we have been allowed to make our decisions as to the
value of retaining cigendirections based on independent tests
as well as on the stability of the t-rms in the algorithm and
the performance of the algorithm. F,.rthermore, we have not
had to concern ourselves with the possibility that a given
direction is being retained because of linear dependence on
another eigendirection because of the orthogonal properties
of the eigendirections. Although this example has been given
for a regression analysis, our programs are completely
operational and provide exactly the same results using similar
outputs for a Fisher classifier. Similar procedures can be
prepared for any linear classifier.
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